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5.1 Introduction

Determinism and randomness are the two pillars of scientific methodology. Ruhla
(1992) argues that science, in its long historical evolution, has favored determin-
ism. In other words, the search for an exact relationship between dependent and
independent variables has received first priority by scientists who follow the de-
terministic tradition of Euclid, Newton and Leibnitz. The probabilistic paradigm,
which originated in the rigorous analysis of gambling games, has flourished dur-
ing the past several decades as exact relationships have become more difficult to
confirm.

Developments in operations research, management science and financial eco-
nomics since World War II have reflected the evolution of scientific methodology
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in the physical sciences. The Marshallian static equilibrium price theory, the Wal-
rasian dynamic tatonement general equilibrium, linear programming techniques,
game theory and various other techniques, all emphasized classical determinism.
However, measurement errors, unobservable variables, incomplete models, the in-
troduction of expectations and the admission of the economic and business com-
plexity, among other reasons, have swung the methodological pendulum towards
probabilistic reasoning. This remarkable shift to probabilistic reasoning is quite ev-
ident in financial economics with its key theories of market efficiency and deriva-
tives pricing. The need to forecast an uncertain future variable for purposes of eco-
nomic and financial planning has reinforced probabilistic methods. Such reasoning
gave rise to statistical techniques and the establishment of the field of financial eco-
nomics. The textbook by Campbell, Lo and MacKinlay (1997) on the econometrics
of financial economics exemplifies the probabilistic reasoning in this area.

Although it is currently accepted by economists and financial analysts that there
is a clear dichotomy between deterministic and probabilistic modeling, relatively re-
cent developments in physical chaotic dynamics have shown that certain processes,
while they appear to be random, need not in fact be random. It is the purpose of this
paper to first review rapidly these ideas and, second to consider a model that is de-
terministic and ask the fundamental question: ”When does nonrandomness appear
random?”. Put differently, suppose that an exact, deterministic theoretical model is
developed between certain variables: when or how can a financial economist con-
clude, by observing exact time series measurements of such variables, that these
variables are random?

The remainder of the paper is organized as follows. Section 2 briefly contrasts
the notion of deterministic and random models with an emphasis on financial eco-
nomics, while section 3 presents the most famous deterministic system that behaves
like a random one, i.e. the Lorenz equations. Our contribution is exposited in sec-
tion 4 where we sample from the Lorenz equations and posit the question: when or
how can a financial analyst uncover whether the model under analysis is determin-
istic or random. We illustrate in section 4 that it is possible for a financial economist
to conclude that a model is random when actually it is not. An evaluation, summary
and questions for further study are given in the last section.

5.2 Deterministic versus random models

Deterministic models consist of exact relationships. Abstracting from specific mod-
elling considerations, the notion of determinism is clearly demonstrated in the re-
lationship of a function:

y = f(x) (5.1)

where f denotes the set of ordered pairs (x, y). In other words, each x is unam-
biguously associated with a specific y, with such a y being equal to f(x). From the
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simple calculus where f(x) : R → R, R denoting the real numbers, to multivari-
ate calculus, differential equations, real analysis and functional analysis, the subject
matter remains exact relationships between or among certain variables. These exact
relationships can become quite complicated, particularly when such a relationship
is between derivatives (i.e. differential equations) or even among functions them-
selves (i.e. functional analysis). Nevertheless, in all instances, such relationships
are exact.

From Euclid’s geometry, to Newton’s calculus and to today’s advanced analysis,
the subject matter of scientific investigations is determinism. Discovering, estab-
lishing, analyzing and understanding exact relationships among certain variables
remains today’s highest scientific goal, not only of mathematicians, but also of ap-
plied researchers, such as physicists and management scientists. Only after such a
primary goal has not been reached, do scientists consider second best solutions by
studying nondeterministic models. Such models are also called random or stochas-
tic and are mostly substitutes rather than competing alternatives for the determin-
istic truth.

Mathematics, which one could argue remains the most rigorous of human sci-
entific efforts, demonstrates that, independent of its intrinsic interest, randomness
is not an alternative of equal standing but a temporary substitute to determinism.
From the elementary probability, where one flips a coin, to measure-theoretic prob-
ability, the notion of a function prevails. What changes is the domain of the function.
In probability, the domain is a random set and a function that takes its values from a
random set is called a random variable. Ruhla (1992) describes with great scientific
care the relationship between these two methodologies by arguing that probability
is a branch in the scientific tree of determinism.

The methodological debate between randomness and nonrandomness in finan-
cial economics has been extensive. Actually, two very popular books by Malkiel
(2003) and Lo and MacKinlay (1999) review extensively the use of random and
nonrandom techniques applied to the behavior of stock prices. A more rigorous
approach of similar methodological issues is found in Campbell, Lo and MacKinlay
(1997), cited in the previous section. Actually, while the efficient market hypothesis
celebrated the methodology of random walks and martingales during the 1970s,
studies such as Scheinkman and LeBaron (1989) and Hsieh (1989, 1991) followed
by Lo (1991), Sengupta and Zheng (1995), Corazza and Malliaris (2002), Kyrtsou
and Terraza (2002, 2003) among others, have shown the merit of chaotic dynamics.
Useful surveys of the chaotic dynamics methodology can be found in Brock and
Malliaris (1989) and Brock, Hsieh and LeBaron (1992).

5.3 The lorenz equations

Our discussion thus far was carried out at the methodological level. In other words,
in searching for causal relationships, a scientist may choose an exact or a random
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model. We have argued that exactness has been given priority in the applied sci-
ences and in pure mathematics, while randomness is viewed as a temporary method-
ological substitute. How can we further strengthen our argument towards deter-
minism?

Chaotic dynamics was developed precisely for this purpose: to demonstrate that
there exist exact functions which generate very complicated trajectories that appear
like random. From the seminal work of Eckman and Ruelle (1985) to the numerous
texts about dynamics such as Devaney (1986) or Guckenheimer and Holmes (1983),
scientists have exposited an exciting new branch of mathematics which reinforces
determinism.

Limitations of space do not allow us to describe in detail the key ideas, defi-
nitions and theorems of chaotic dynamics. Devaney (1986) presents the essential
elements while Guckenheimer and Holmes (1983) treat the subject at a more ad-
vanced level. Here, for the sake of continuity, we give the fundamental definition
of chaotic dynamics. We say that a function f : R→ R is chaotic if it satisfies three
conditions: (a) f is topologically transitive, (b) f has sensitive dependence on initial
conditions, and (c) f has periodic points that are dense in the real numbers.

May (1976) gives several examples of chaotic maps, while Guckenheimer and
Holmes (1983) discuss in detail the mathematical properties of such maps. The
Lorenz (1963) equations are the most famous example of a system that generates
chaotic dynamics. They are:

xt = s(−xt−1 + yt−1) (5.2)
yt = rxt−1 − yt−1 − xt−1zt−1 (5.3)
zt = −bzt−1 + xt−1yt−1 (5.4)

This system of equations is represented here by difference equations. They can also
be expressed as a system of differential equations, as was initially derived by Lorenz
(1963) in his meteorological study of a three-equation approximation to the motion
of a layer of fluid heated from below. Observe that there are three parameters, s, r
and b. More specifically, the parameter r corresponds to the Reynolds number and
as it varies, the system goes through remarkable qualitative changes. For parameter
values b = 2.667, r = 28.0 and s = 10.0, almost all solutions converge to a set called
the strange attractor. Furthermore, once on the attractor, these solutions exhibit
random-like behavior. An exhaustive analysis of the numerous properties of these
equations may be found in Sparrow (1982). Malliaris (1993) hypothesizes that the
S&P 500 Index follows chaotic dynamics and uses neutral networks to confirm this
hypothesis. Malliaris and Stein (1999) give a detailed financial interpretation of the
Lorenz system and perform an econometric estimation using futures data. Papers
by Brock and Hommes (1998), Lux (1998) and Chiarella, Dieci and Gardini (2000)
offer theoretical models of chaotic dynamics.
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5.4 The experiment

We are now in a position to describe our contribution. Using the software Phaser
developed by Kocak (1989), we generate 5000 observations using the previous sys-
tem of equations with parameter values as indicated above. The software generates
these values for a choice of two numerical approximation methods, i.e. Euler and
Runge-Kutta, and for certain values of the step size in the approximation. Initial
values are also needed for the three variables. The values used in our experiment
are x(0) = y(0) = z(0) = 5.

Notice that for an interval [0, T ], Phaser selects a finite number of points [0, t1, . . . ,
tk, . . . , T ] which for simplicity are chosen to be equally spaced. The distance, h =
tk+1 − tk, between two consecutive points is called the step size. By selecting a
very small step size, let us say 0.01 instead of a larger one, such as 0.1, the numer-
ical approximation becomes more accurate. Of course, such accuracy depends on
the particular numerical approximation. Kocak (1989) compares both methods and
concludes that the Runge-Kutta approximation is more accurate than the Euler ap-
proach. Our calculations are performed using the Runge-Kutta approximation with
a step size of 0.1, unless otherwise specified.

The next concept we wish to discuss is the idea of a jump. When for example
the jump = 1, solutions are plotted at every step. If the jump = 10, then solutions
are plotted at every tenth point. In other words, selecting a jump of 100 means that,
although all the necessary calculations are performed, only each hundredth nu-
merical value is sampled. In our experiment, we use jumps of 1, 10, or 100 to check
and see whether the techniques used are capable of identifying the deterministic
structure of the Lorenz map.

Before we describe our three data sets, and to further motivate our experiment,
consider Figures 1 and 2. In Figure 1, we plot the time series of the x-variable for t
in [0, 100] when the step size is chosen to be 0.001 and the jump is equal to 1. The
strange atttractor is clearly visible and the time series does not appear very ran-
dom. On the other hand, in Figure 2, for a smaller step size 0.01 and a much larger
jump = 100, both the time series of x and its strange attractor lose their structure
and appear random-like. Although these two figures do not constitute evidence of
randomness, it is instructive to observe that infrequent sampling, by jumping over
detailed information, misses the underlying structure of the population data.

Having made the above clarifications, our experiment now can be described.
Using the deterministic Lorenz equations, with a step size of 0.1, we generated three
sets of 5000 observations each. The first set records each value of the variable x
generated by the Lorenz equations. In other words, the first set has jump = 1. The
jumps of the second and the third set are 10 and 100 respectively. The exact size of
these two jumps is not critical; other numbers such as 20 and 50 or 250 and 500, etc.,
could have been chosen; what we wish to illustrate is three levels of information: all
values, every tenth value and every hundredth value, where these three procedures
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correspond to detailed sampling, frequent sampling, and infrequent sampling. Ob-
viously, to keep the number of observations the same, the interval of the second set
is longer than the first and the third is longer than the second.

We next ask the fundamental question: what methods are available to the de-
cision scientist to allow him/her to distinguish whether a data set of observations
is generated by a deterministic or random function? Scientists from various back-
grounds have researched this question extensively. Key references are Grassberger
and Procaccia (1983), Takens (1985) and Brock, Hsieh and LeBaron (1992). For our
purposes, we will briefly exposit the two main techniques, namely, the correlation
dimension and the BDS tests. Then, in Tables 1 and 2, we will present the results of
these two tests.

The correlation dimension was originally proposed by Grassberger and Procac-
cia (1983). Suppose that we are given a time series of price changes {x(t) : t = 0, 1, 2,
. . . , T}. Suppose that T is large enough so that a strange attractor has begun to
take shape. Use this time series to create pairs, i.e. x(t) ∼ {[x(t), x(t + 1)] : t =
0, 1, 2, ..., T} and then triplets and finally M -histories, (t) ∼ {[x(t), ..., x(t + M −
1)] : t = 0, 1, 2, . . . , T}. In other words, we convert the original time series of
singletons into vectors of dimension 2, 3, ..., M . In generating these vectors, we
allow for overlapping entries. For example, if M ∼ 3, we have a set of the form
{[x(0), x(1), x(2)], [x(1), x(2), x(3)], . . . , [x(T − 2), x(T − 1), x(T )]}. Such a set will
have (T + 1) − (M − 1) vectors. Mathematically, the process of creating vectors of
various dimension from the original series is called an embedding.

Suppose that for a given embedding dimension, say M , we wish to measure if
these M -vectors fill the entire M -space or only a fraction. For a given ε > 0, define
the correlation integral, denoted by CM (ε), to be:

CM (ε) =
the number of pairs (s, t) whose distance ‖xM (s)− xM (t)‖ < ε

T 2M

=
the number of (s, t), 1 ≤ t, s ≤ T, ‖xM (s)− xM (t)‖ < ε

T 2M
(5.5)

where TM = (T+1)−(M−1), and as before xM (t) = [x(t), x(t+1), ..., x(t+M−1)].
Observe that ‖ · ‖ in 5.5 denotes vector norm. Using the correlation integral, we

can define the correlation dimension for an embedding dimension M as:

DM = lim
ε→0
T→∞

lnCM (ε)

ln(ε)
(5.6)

In 5.6 ln denotes natural logarithm. Finally, the correlation dimension D is given
by:

D = lim
M→∞

DM (5.7)

We remark that technical accuracy requires that DM in is a double limit, first in
terms of T → ∞ and then in terms of ε → 0. However, in practice T is usually given
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and it is impossible to increase it to infinity. Thus the limit T → ∞ is meaningless in
practice and moreover M is practically bounded by T . Therefore, we only consider
the limit ε → 0 in (5.6).

Table 5.1 collects the results for correlation dimension analysis. Observe that
there are three key columns of results corresponding to ε, 0.5ε, and 0.1ε. These three
columns attempt to numerically illustrate the limiting process in (5.6). Observe also
that we offer seven rows for various embedding dimensions 2, 3, 4, 5, 10, 15, and 20.

The results clearly demonstrate that for jump = 1, the correlation dimensions
analysis detects the deterministic structure since the numbers for sample 1 and for
each ε, 0.5ε, and 0.1ε are small and converge to a number between 1 and 2; (see col-
umn 0.1å for sample 1). On the other hand, the numbers for sample 10 are larger
as ε decreases to 0.5ε and 0.1ε, these numbers do not converge; (see column 0.1ε
for sample 10 as the number starts from 1.3611 and grows beyond 3.5810 to become
indeterminate. Finally, for sampling every hundredth, the numbers of the corre-
lation dimension are even larger and diverge sooner than for those of jump = 10.
To summarize, a decision scientist would conclude that observations sampled from
the x-variable of the Lorenz equations constitute a random set.

The second test we perform is the BDS, extensively presented in Brock, Hsieh
and LeBaron (1991) and Brock, Dechert, Scheinkman and LeBaron (1996) These au-
thors report that for an independent and identically distributed random process
and for fixed M-histories and ε > 0,

CM (ε, T ) → [C1(ε)]M as T → ∞ (5.8)

They further report that as T approaches infinity,

√
T{CM (ε, T )− [C1(ε, T )]M} → N(0, σ2(ε, T )), (5.9)

whereN denotes a normal distribution with mean zero and variance σ2(ε, T ). From
the above two equations 5.8 and 5.9, it is concluded that

√
T{CM (ε, T )− [C1(ε, T )]M}

σM (ε, T )
→ N(0, 1), (5.10)

Table 5.2 has only two values which lie in the [-1.96, 1.96] interval of the stan-
dardized normal distribution. These are the values: -0.0107 corresponding to jump
10, 1.0ε and M = 3 and -1.6259 corresponding to jump 100, 1.0ε and M = 15. For
all the other values, we reject the null hypothesis of randomness. Note that the BDS
does not claim that our three samples of 5000 observations are deterministic be-
cause its alternative to the null hypothesis is not well specified. Thus, a researcher
could not conclude that the underlying structure of our samples is deterministic; he
or she could only reject, with two exceptions, the null hypothesis.
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Times of å 1,0ε 0,5ε 0,1ε
Value of ε 0.2205 0.2183 0.2160 0.11025 0.10915 0.108 0.02205 0.02183 0.0216
Sample 1 10 100 1 10 100 1 10 100

Embedding Dimension
2 0.66157 0.90593 0.90765 0.84393 1.13420 1.17630 1.14340 1.36110 1.49650
3 0.88411 1.35200 1.36670 1.03870 1.59770 1.77020 1.32140 1.77130 2.24430
4 1.05840 1.76940 1.82400 1.18270 2.01190 2.36340 1.44140 2.08380 3.00400
5 1.17740 2.13320 2.28270 1.27740 2.36910 2.95770 1.52080 2.36430 3.84110
10 1.60950 3.99840 4.59000 1.69210 4.18990 5.93220 1.83130 3.58190 N/A
15 2.00860 5.87520 6.85070 1.99530 5.97950 N/A 2.00990 N/A N/A
20 2.35560 7.68720 9.38890 2.26830 7.06120 N/A 2.16770 N/A N/A

Table 5.1: Dimension analysis DM for xt (5000 observations generated from Lorenz
Equation for step 0.1). Note: ε=0,2205 for sample=1; ε=0,2183 for sample=10;
ε=0,2160 for sample=100.

Times of ε 1,0ε 0,5ε 0,1ε
Value of ε 0.2205 0.2183 0.2160 0.11025 0.10915 0.108 0.02205 0.02183 0.0216

Sample 1 10 100 1 10 100 1 10 100
Embedding Dimension

2 1,5672E+2* -2.4762* -5.7504* 2,7225E+2* 2,1428E+1* -5.9515* 6,1123e+2* 1,4718e+2* -3.3343*
3 1,6288E+2* -1.0658E-02 -5.0498* 4,3919E+2* 4,7617E+1* -5.3501* 3,0973e+3* 4,8539e+2* -1.9821*
4 1,9461E+2* 4,8161* -4.1820* 7,9437E+2* 7,1756E+1* -4.6143* 2,0468e+4* 1,7420e+3* -4.0175*
5 2,5816E+2* 1,2546E+1* -3.7614* 1,6643E+3* 1,0937E+2* -4.1692* 1,7594e+5* 7,1521e+3* -1.34E+01*
10 1,5363E+3* 2,2178E+1* -2.8503* 1,2980E+5* 5,1375E+2* -2.7778* 2,4482e+10* 3,2205e+7* -1.12E+01*
15 1,2904E+4* 2,6654E+1* -1.6259 2,0387E+7* 3,1108E+3* -6.6069* 9,0690e+15* -4.8504* -5.2183*
20 1,3955E+5* 2,6288E+1* 2.6727* 4,0968E+9* 1,0592E+3* -3.7957* 4,3345e+21* -2.6627* -2.8917*

Table 5.2: BDS Test for for xt (5000 observations generated from Lorenz Equation
for step 0.1). Note: ε=0,2205 for sample=1; ε=0,2183 for sample=10; ε=0,2160 for
sample=100.
* Reject null hypothesis of randomness

5.5 Evaluation and conclusion

This paper has reviewed the methodological foundations of deterministic and ran-
dom modeling and argued that determinism remains the scientific goal of any in-
vestigation. Recent papers in economic theory as in Brock and Hommes (1998), Lux
(1998), Malliaris and Stein (1999), Chiarella, Dieci and Gardini (2000), among oth-
ers, show that even if the time series behavior of a given model looks like random,
its underlying structure may still be deterministic.

Suppose that the underlying relationships are exact. What could account for
our inability to detect such a structure and then to build models that would make
such a structure explicit. In this paper, we make a contribution by demonstrating
that the currently available techniques for distinguishing between deterministic and
random systems are not adequate. The correlation dimension performs well when
every value of the Lorenz equation is sampled, but does poorly when the jump
increases to 10 and then to 100. This illustrates that unless, in the real world, we can
record information at high frequencies rather than at prespecified intervals, say end
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Figure 5.1: Rules of 4-day period

 

 
 

 
 

Figure 5.2: Rules of 4-day period

of the day, weekly, monthly, etc., we are bound to lose the underlying structure. Our
experiment shows that infrequent sampling misses the deterministic relationship.
Of course, data limitations may not allow a scientist to perform the tests we used.
For example using annual or quarterly data, one does not have enough observations
to do dimension and BDS analysis. There is evidence provided by Ramsey, Sayers
and Rothman (1990) that dimension calculations using small data sets are biased.
However, the availability of massive data is rapidly becoming a reality and such
data can be conveniently analyzed by the techniques demonstrated. The BDS does
very well rejecting randomness in our sample, but cannot specify the alternative.

Our overall conclusion is simply this: since WWII, the scientific pendulum in
general and in management science, financial economics and forecasting in particu-
lar, has been pulled away from determinism and brought towards stochasticity. But
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such stochasticity has not fully enriched our understanding of the real world simply
because what drives randomness often cannot be anticipated. Chaotic dynamics is
not a totally new methodology, but rather a new way of affirming order, rationality
and exactness despite the seeming disorderly, unpredictable and random behavior
of certain variables. This discovery of chaotic dynamics and our increasing under-
standing of the Lorenz equation offer valid alternatives to randomness.
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