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Abstract. A neural network model that processes financial input data is developed to estimate the mar-
ket price of options at closing. The network’s ability to estimate closing prices is compared to the Black-
Scholes model, the most widely used model for the pricing of options. Comparisons reveal that the
mean squared error for the neural network is less than that of the Black-Scholes model in about kalf of
the cases examined. The differences and similarities in the two modeling approaches are discussed. The
neural network, which uses the same financial data as the Black-Scholes model, requires no distribution
assumptions and learns the relationships between the financial input data and the option price from the
historical data. The option-valuation equilibrium model of Black—Scholes determines option prices un-
der the assumptions that prices follow a continuous time path and that the instantaneous volatility is

nonstochastic.
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1. Introduction

There has recently been considerable interest in
the development of artificial neural networks
(ANNSs) for solving a variety of problems, Neural
networks, which are capable of learning relation-
ships from data, represent a class of robust, non-
linear models inspired by the neural architecture
of the brain. Theoretical advances, as well as
hardware and software innovations, have over-
come past deficiencies in implementing machine
learning and made neural network methods avail-
able to a wide variety of disciplines. Financial
applications that require pattern matching,
classification, and prediction, such as corporate
bond rating {1}, trend prediction [2], failure pre-
diction {3], and underwriting [4], have proven to
be excellent candidates for this new technology.

" In this article, we present a neural network de-
veloped to estimate the market prices at closing

of OEX options (options on the Standard and
Poor's 100} using transactions data for the period
January I, 1990, to June 30, {990. The neural
network is a robust modeling technique that re-
quires no assumptions about price distributions,
whereas the Black—Scholes model is based on
the assumption that prices follow a lognormal
distribution. We compare the performance of the
neural network and the Black-Scholes option-
pricing model with actual prices as reported by
the CBOE (Chicago Board of Options Exchange)
in the Wall Street Journal.

2, Qption-Pricing Models

In 1973, Black and Scholes {3} proposed a model
for computing the current market worth of an op-
tion. The discovery of the Black-Scholes model
was both empirically and theoretically signifi-
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cant. lts theoretical importance came from find-
ing a solution to a longstanding problem that was
initially posed by Louis Bachelier in 1900. He as-
sumed that the price of the underlying asset fol-
lowed a continuous random walk and proceeded
to price the call based on such an asset. The
problem with this methodology lies with the fact
that with probability 1. the price of the asset be-
comes negative, which is not consistent with the
actual behavior of stock prices. which never take
negative values. It took an independent discov-
ery of [to's calculus in the 1940s and 1950s to de-
velop a mathematical theory for the modeling of
continuous time processes. This was used by
Black and Scholes in their successful formulation
and solution of the option-pricing problem.

The empirical significance of the Black-Scholes
model lies in its widespread use as a pricing tool
on the trading floor, Trading began in 1973, and
in less than 20 years, the volume of option trad-
ing has increased dramatically. Currently, the
trading volume of calls and puts for the OEX is
around 760,000 contracts each.

An option is an agreement giving the holder
the right to purchase (a call) or sell (a put) some
assef ai an agreed-upon future time, called the
date of expiration. European options cannot be
exercised before expiration, whereas American
options may be exercised at any time prior to ex-
piration. The price that will be paid at this future
date is called the exercise price of the option.
The market price of the option is the price paid
now for the privilege of buying or selling the un-
derlying asset on or before the expiration date.
The Black~Scholes model uses five input vari-
ables (exercise price of the option, volatility of
the underlying asset, price of the underlying as-
set. number of days until the option expires, and
interest rate) to estimate the price that should be
charged for an option. The Black-Scholes op-
tion-pricing formula for calcuiating the equilib-
rium price of call options is ‘

C=8-N(d\)—~Xe "N(d» (6

where C is the market price to be charged for the
option, N is the cumuiative normal distribution,
T is the number of days remaining until expira-
tion of the option expressed as a fraction of a
year, S is the price of the underlying asset, r is
the risk-free interest rate prevailing at period £, X

is the exercise price of the option, and 4, and d,
are given by
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and

where o is the variance rate of return for the un-

derlying asset. For any time interval {0,¢] of

length ¢, the return on the underlying asset is nor-

mally distributed with variance o’t {6].

There are seven assumptions underlying this
model that assume ideal conditions in the market
{3.7]. They are
(a) the interest rate is known and constant

through time;

(b) the stock price follows a random walk in con-
tinuous time with variance proportional to
the square of the stock price; thus the distri-
bution of prices is log-normal and the volatil-
ity is constant;

{c) the stock pays no dividends;

() the option is European, i.e., it can only be

" exercised at maturity (expiration date);

(e) there are no transactions costs of buying or
selling;

(f) the market operates continuously; and

(g) there are no penalties to short selling.

For a rigorous presentation of the derivation of

the Black-Scholes model, see [8].

For the remainder of this article and for the
data we have chosen, the exercise price of the
option is referred to as exercise price and is de-
noted by EXER; the annualized square root of
the variance of the underlying asset is the vola-
tility. VOL; the price of the underlying asset is
the price of the S&P 100 index at closing, or sim-
ply. the closing price, CLOSE PRICE; the inter-
est rate used is the prevailing rate on treasury
bills. denoted INT; and time to expiration of the
option is the number of days to expiration,
DAYS. The exercise price, number of days to ex-
piration, and closing price are observable. The
volatility cannot be directly observed, so it is
computed implicitly. Most observers use the




Implied Standard Deviation of observed option
prices as an estimate of volatility {91. We used at-
the-money call options for this estimate and then
used that estimate of volatility to calculate the
call options for that day.

Options with an exercise price equal to the
closing: price of the index are said to be at-the-
money. In the pricing of calls, exercise prices
less than the closing price are in-the-money, and
exercise prices greater than the closing price are
out-of-the-money. If the ratio of the closing price
to the exercise price is less than (greater than) .85
(1.15), then the option is said to be deep-out-of-
{deep-in-) the-money.

Since its introduction in 1973, the Black-
Scholes options-pricing model has performed
better overall than any model [9,10]. The major
alternative models have been Cox and Ross’
pure jump model, Merton's mixed diffusion-jump
model (both these models relax the continuous
time assumption), Cox and Ross’ constant elas-
ticity of variance diffusion model, Geske’s com-
pound option diffusion model, and Rubinstein's
displaced diffusion model (these last three relax
the assumption of constant volatility).

Option trading has also been considered an ap-
propriate domain for expert-system applications.
A constraint logic programming modei [11] has
been developed as an expert system that uses the
Black-Scholes model to evaluate strategies and
to compute option values. Constraint satisfaction
has been used for other approaches to option-
price modeling [12]; however, no strong mea-
sures of the effectiveness of these models have
been reported. .

Empirical tests show that Black—Scholes re-
mains superior among option-pricing equilibrium
models, with the possible exception of cases in
which trades are made deep-in- and deep-out-of-
the-money. The volume of research related to the
Biack—Scholes model, which continues to prolif-
erate even 20 years after the model’s introduc-
tion, indicates that there is considerable interest
and value in developing a model that is more ro-
bust than Black-Scholes. In addition, there is
some reason to believe that the trading process
itself may reveal underlying strategies as well as
analytical models, and there is information to be
gained from historical pricing data. Neural net-
works have been showa to be useful in modeling
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nonstationary processes and nonlinear depen-
dencies and thus may represent a channel of in-
vestigation in the search for another type of op-
tion-pricing modet.

3. Methedology
3.1. The Data Set

The data set used for this research was developed
using option-price transactions data published in
the Wall Street Journal during the period from
January 1. 1990, to June 30, 1990. The data set
selected for testing includes pricing data from
April 23 to June 29, 1990, and includes in-the-
money options and out-of-the-money options
with time to expiration between 30 and 60 days.
Typically, 12 different call prices per day are
guoted.

The five variables selected to estimate the
market price of the option are those used in the
Black-Scholes model; exercise price, time to ex-
piration, closing price, volatility, and imterest
rate. A sample data set used to caiculate the
Black-Scholes model prices is shown in table 1.
For the neural network, we added two lagged vari-
ables: vesterday’s closing price, LAG CLOSE
PRICE, and yesterday's market price of the op-
tion. LAG MARKET PRICE.

Preliminary data analysis revealed dependen-
cies and relationships between the variables;
these were used to partition the data sets for the
neural network. Figure 1 shows a graph of exer-
cise prices versus market prices. From deep-in-
the-money to at-the-money, there is a sharp and
steady decrease of prices. From at-the-money
through out-of-the-money, the prices have a
gentle asymptotic approach to the x-axis. Exper-
imentation with different training sets showed
that better results could be obtained in the neural
networks when the data were separated into in-
the-money and out-of-the-money groups. Prices
in-the-money vary from $60.00 to $0.75; prices
out-of-the-money vary from $15.50 to $0.0625. A
larger proportion of observations exist for out-of-
the-money prices than for in-the-money prices.
Correlations were also found between time {0 ex-
piration and market price of the option. and be-
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Tuble |, Sample data set

Date
Close INT Market

M D Y EXER Days price Rate VOL price
4 23 90 230 26 315.38 7.71 0.[61633 39.5
4 23 30 290 16 31538 7.7 0.161633 28
4 23 90 295 26 315.58 7.71 0.161633 2.5
4 23 20 300 26 315.58 7.7% 0.161633 17.873
4 23 90 305 26 31538 7.71 0.161633 14.3
4 23 S0 310 16 315.38 1.7 0.161633 HI]
4 23 90 315 26 315.38 7.71 Q1610633 6.625
4 24 90 280 25 313.96 1.7 0.166284 38
4 24 90 290 25 313.96 7.77 0.166284 37.25
4 24 90 295 25 313.96 1.77 0.166284 .5
4 24 90 300 25 313.96 777 0.166284 17
4 24 90 305 23 313.96 1.77 0.166284 12.73
4 24 90 30 25 313.96 7.77 0.166284 3.875
4 25 90 280 24 315.06 1.71 0.139941 16
4 25 90 300 24 315.06 .77 0.155941 17
4 25 90 305 24 315.06 7.77 {1.139941 3.5
4 25 90 310 24 315.06 1.7 0.15994} 9.125
4 25 90 35 24 315.06 1.17 0.139941 6
4 26 90 280 23 31582 7.77 0.158642 37
4 26 50 290 23 315.82 7.77 0.138642 25.375
4 26 90 295 23 315.82 177 0.138642 2t.3
4 26 9% 360 23 315.82 1.77 0.158642 17.625
4 26 90 305 23 315.82 7.77 0.158642 13.5
4 26 90 30 23 315.82 7.7 0.138642 9.5
4 26 90 33 23 315.82 1.77 0.138642 6.25
4 27 90 280 22 312.48 7.77 0.136054 32.375
4 27 90 290 22 312.48 7.77 0.136054 23
4 27 90 295 2 312.48 7.7 0.136054 18.5
4 27 20 300 2 312.48 1.7 0.136054 14.25
L3 27 S0 305 n 312.48 1.77 0.136054 10
4 27 96 310 22 312.48 7.77 0.136054 6.375

tween the closing price and the market price of
the option. h

3.2, The Estimation Process

Under supervised learning, the feedforward, back-
propagation neural network learns relationships
between input and output variables during a
training process, as data are presented to the net-
work. One approach to testing the performance
of the network is to check its accuracy in esti-
mating values for a holdout sample generated
from the training set. For evaluating the perfor-
mance of the option-pricing neural network, we
selected a more realistic and more difficult per-
formance measure. The network was trained us-
ing historical data, and option-price estimations

for a future period were developed with the
trained network and compared to actual prices.

To capture the volatile natre of the options
market, a relatively short time frame was used
for the training sets and testing sets. The test-
ing sets were developed using a two-week time
frame: this was a convenient choice because in-
terest rate and volatility changed weekly and
were relatively stable over a two-week period.
Five two-week periods were selected for price
estimation: the weeks beginning April 23, May 7,
May 21, June 4, and June 18. To provide the
neural network models with a variety of exam-
ples, each training set included as many obser-
vations as necessary to provide at least one full
cycle (30 days prior to the estimation period) of
pricing data.
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4, The Neural Network Model for Option Pricing
4.1. Neural Networks and Backpropagation

Inspired by studies of the brain and the nervous
system, neural networks are composed of neu-
rons or processing elements and connections, or-
ganized in layers. These layers can be structured
hierarchically, and the first layer is called the in-
put layer, the last layer is cailed the output layer,
and the interior layers are called the middie or
hidden layers. Feedforward networks map inputs
into outputs with signals flowing in one direction
only, from the input layer to the output layer.
Each connection between neurons has a numer-
ical weight associated with it that models the in-
fluence of an input cell on an output cell. Positive
weights indicate reinforcement; negative weights
are associated with inhibition. With supervised
{earning, connection weights are learned by the
network through a training process, as examples
from a training set are presented repeatedly to
the network.

Each processing element has an activation
level, specified by continuous or discrete values.
If the neuron is in the input layer, its activation
jevel is determined in response to input signals it

receives from the environment. For cells in the
middle or output layers, the activation level is
computed as a function of the activation levels on
the cells connected to it and the associated con-
nection weights. This function is called the trans-
fer function or activation function and may be a
finear discriminant function, i.e., a positive sig-
nal is output if the value of this function exceeds
a threshold level, and zero otherwise. It may also
be a continuous, nondecreasing function. The
most commonly used for backpropagation is the
sigmoidal or logistic function

(4)

where v is a constant which controls the slope.
While basically an information processing tech-
nology, neural networks differ from traditional
modeling techniques in a fundamental way. Para-
metric models require that the developer specify
the nature of the functional relationship between
the dependent variable and the independent vari-
ables, e.g., linear or logistic. Neural networks
with at least one middle layer use the data to
develop an internal representation of the refation-
ship between the variables s0 that a priori as-
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sumptions about underlying parameter distribu-
tions are not required {131, As a consequence, we
might expect better resuits with neural networks
when the relationship between the variables does
not fit the assumed model, Nevertheless. many
decisions regarding model parameters and net-
work topology can affect the performance of the
network,

In a feedforward neural network, the connec-
tion weights can be determined during a two-step
training process that presents examples {{(x,,y,) :
p = L,....P} where x, is the input vector and y,
is the output vector. In the first step. for each
tayer of nodes. the network computes the output
vector o, as a function of the input vector and the
associated connection weights. The values for
the output layer nodes are compared to the actual
output vector, and a performance criteria, such
as the sum of the squared error, is used to deter-
mine the error for the output layer. In the second
step. the error is backpropagated through the
network and the weights w, are modified, accord-
ing to their contribution to the network error F.
For further details, see {14].

4.2. The Development of the Neural Network
for Option Pricing

Since feedforward, single-hidden-layer neural net-
works have been successfully used for classifi-
cation and prediction {13-17], we selected this
network model for our initial experiments and
used the backpropagation training algorithm. A
neural network consisting of 7 input nodes, 4
middle-layer nodes, and 1 output node was de-
veloped (see figure 2). The input nodes represent
the five financial variables used in the Black-
Scholes model (EXER, DAYS, CLOSE PRICE,
VOI1., and INT) and two lag variables {LAG
CLOSE PRICE and LAG MARKET PRICE),
and the output node (MARKET PRICE} repre-
sents the market price of the option.
Determining the proper number of middle-
layer nodes requires validation techniques to
avoid underfitting (too few nodes) and overfit-
ting (too many nodes). Generally speaking, too
many nodes in the middle layer, and, hence, too
many connections, produces a neural network
that memorizes the data and lacks the ability to
generalize. One approach that can be used to

Cupid Layer

Migale Layer

loput Layer

EXER DAYS CLOSE LAG iNT VoL LAG
PRICE  CLOSE MARKET
PRICE

Fiv. 2. Neural network for option pricing.

avoid overfitting is v-fold cross-validation [18}, a
variation on leave-one-out cross-validation {19].
We employed a special case of cross-validation
in which the data are divided into two subsets, a
training set and a validation set {20]. The training
set is used to estimate the parameter, and the
second set, which is a holdout sample. is used to
estimate performance on new data. The cross-
validation mean squared error is computed for
networks of increasing size. where the number of
middle-layer nodes varies from3 to 3. The resuits
show that the optimal number of middle tayer
nodes is 4 (see tabie 2).

The network is fully connected, with a direct
connection from exercise price to the output
node. Better results were achieved with this ad-
ditional connection because of the linear depen-
dence between EXER and MARKET PRICE ob-
served in the data set and verified with a series
of regression models. All the connection weights
were initially randomized. and were then deter-
mined during the training process.

The generalized Delta rule was used with the
backpropagation of error to transfer values from
internal nodes. {For a more detailed explanation
of backpropagation learning and the generalized
Delta rule, see [14].) The sigmoidal function is

Tuble 2. A comparison of neural network models for the
week beginning April 23

Network mean squared error

Model Training set Testing set
3 middle nodes 0.154464 0.20447!
4 middle nodes 0.074469 0.135781
5 middle nodes 0.116703 0.178432




the .activation function specified in this neural
network and is used to adjust weights associated
with each input node.

Supervised learning was conducted with train-
ing sets consisting of the seven predictor vari-
ables and the corresponding market price of the
option for each exercise price, for each trading
day. For the input nodes in which the data were
not in ratio form. the values were scaled to be
within a range of 0 to {. This minimizes the effect
of magnitude among the inputs and increases the
effectiveness of the learning aigerithm. The se-
fection of the examples for the training set fo-
cused on the degree to which the data set repre-
sented the population. The size of the training set
is important, since a larger training set may take
longer to process computationally but may ac-
celerate the rate of fearning and reduce the num-
ber of iterations required for convergence.

The learning rate and momentum were set
initially at 0.9 and 0.6. respectively, and the
learning rate was adjusted downward and the
momentum was adjusted upward to improve per-
formance. The training examples were presented
to the network in random order to maximize per-
formance and to minimize the introduction of
bias. Training was performed until convergence
was achieved using the network MSE, which is
graphically displayed during training. For most
cases, the MSE was essentially stable after
40.000 iterations. The network was implemented
using the software package Neuratworks Profes-
sional II Plus® running on a 386-based micro-
computer with a math co-processor.

4.3, Experimental Design

To compare the estimations made by each model,
we report the mean absolute deviation (MAD),
mean absolute percent error (MAPE), and mean
squared error (MSE) for each of the five two-
week periods for both in-the-money and out-of-
the-money prices. While MAD and MSE are
meaningful measures of error for this application,
we also report MAPE. Since prices vary from
$60.00 to $0.0625, it is important to compare the
amount of the error with the corresponding base
price, i.e., to measure the relative pricing error.
Option prices were estimated from the Black-
Scholes model using a computer program based

Estimating Option Prices 199

on equations (1) to (3). Neural network estima-
tions were developed by inputting the estimation
sets into a trained network.

3. Results

The initial results showed that, compared to the
actual prices, the neural network estimations had
a lower MAPE and MSE than Black-Scholes for
4 out of 5 two-week periods for the out-of-the-
money case, but Black-Scholes was superior for
3 of 5 two-week periods for in-the-money trades.
These results are reported in tables 3 and 4. A
bias commouly reported in the literature is that
Black—Scholes tends to underprice in-the-money
calls [9]. To examine pricing bias, we plotted the
percent pricing error versus the percent the op-
tion is in-the-money or out-of-the-money. Pricing
error is calculated as the difference in the model
price and actual market price, divided by the
model price. Pricing error is negative when the
model underestimates the actual market price
and is positive when the model overestimates the
market price, The percent in-the-money or out-
of-the-money is found by calculating the differ-
ence in the exercise price and the closing price
and then dividing by the exercise price.

Pricing bias was investigated for both the
Black—Scholes and the neural network models.
Figures 3 and 4 show percent error (values

Tuble 3. Comparative analysis. actual prices with
estimated prices, out-of-the-money

Week beginning MSE MAD MAPE

Aprit 23
Black-Scholes 0.435342  0.598937  30.31731
Neural network  0.074409  0.207702 12.74440
May 7
Black-Scholes 0.160047  0.340729 16.23661
Neural network  0.151516  0.321083 13.44321
May 2
Black-Scholes 0,204219  0.378636 9.43207
Neural network  0.253676  0.42236% 12.30240
fune 4
Black-Scholes 0.245477  0.286643 9. 104615
Neural network  0.231779  0.312945 9.097162
June {8
Biack-Scholes 1.250466  0.660788  17.45452
Neural network  0.455352  0.447812 10.94668
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Tuble 4. Comparative analysis, actual prices with
estimated prices. in-the-money

Week beginning MSE MAD MAPE
April 23

Black-Scholes 1.055732 0.676936 3.8057

Neural network 1175115 0.82434 5.1689
May 7

Black-Scholes 1.459734 (.670291 2.7142

Neural network 3127410 1.289340 7.4727
May 21

Black-—-Schotes 1.386018 0.766019 2.8867

Neural network 1.006885 0.832762 4.6876
June 4

Black~Scholes 1.771367 0.784969 2.8864

MNeural network 2.397112 1.053282 5.2136
June 18

Black-Scholes 3.945318 1.391258 7.2002
Neural network 1.407175 0.987918 6.6399

greater than 0 on the y-axis indicate overpricing
and less than 0 indicate underpricing) relative to
percent in- or out-of-the-money (negative values
indicate out-of-the-money, and positive values
are in-the-money). In the Black-Scholes model
(see figure 3), underpricing is more prevalent
than overpricing for in-the-money and overpric-
ing is predominant for out-of-the-money. The
neural network model (see figure 4) underprices

options more than it overprices them, for both in-
and out-of-the-money. For both models, the most
serious errors occur out-of-the-money; however,
the overpricing errors are more significant for the
Black~Scholes model as prices move deep out-
of-the-money.

Since the Black-Scholes model overprices op-
tions out-of-the-money and the neural network
model tends to underprice these options, we ex-
amined the results obtained when the model
prices are averaged. The MSE, MAPE, and
MAD are reported, for each of the five two-week
periods, in table 5. The MSE, MAPE, and MAD
were each significantly lower for three (different)
two-week periods, This indicates that there may
be some benefit in combining the estimates pro-
vided by the two models for out-of-the-money
prices. Since both models underprice in-the-
money options, averaging for in-the-money data
would compound rather than improve the error.
Thus, only out-of-the-money options benefit
from this combination,

Paired sample comparisons tests were run on
the Black—Scholes estimates and actual market
prices and on the neural network estimates and
actual market prices. In table 6, we report the
results for out-of-the-money prices. The means,
variances, and standard deviations for each sam-
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Fig. 3. Black-Scholes pricing bias.
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ple and for the differences between the model
price and the actual price are reported. The null
hypothesis of no difference in the means is re-
jected at the 5% significance level for each
model. The 95% confidence intervals for the
mean differences show that the Black-Scholes
consistently overprices the options, while the
neural network underprices them. We also ob-
serve that the standard deviation of the differ-
ences is smaller in the neural network prices.
Results of the paired sample comparisons test
for the in-the-money cases are shown in table 7.
There is a statistically significant difference be-
tween the means of the sample of neural network
predictions and the sample of actual market
prices. This is not surprising, since the bias tests
indicated the tendency of the neural network to
consistently underestimate prices. The Black-
Scholes, however, did not show a significant dif-
ference from zero; hence it provides a better
model for in-the-money, for this data set,
Scatterplots were developed showing the mar-
ket prices versus the Black-Scholes prices (see
figures 5 and 7} and the market prices versus
neural network predictions (see figures 6 and 8).
From figures 5 and 6, which show out-of-the-
money prices, we observe more outliers in the
Black-Scholes estimates than in the neural net-

work estimates. This is consistent with the higher
standard deviation found in the paired compari-
sons test. For the neural network estimates,
prices furthest from at-the-money are more clus-
tered than for the Black—Scholes, While a strong
linear relationship is indicated in each, more vari-
ation is observed in the Black-Scholes as the
market prices become larger, i.e., as prices move
further from at-the-money. Figures 7 and 8§,
which show in-the-money prices, show more
consistent spread for the neural network prices,
while the Black~Scholes prices are more clus-
tered near at-the-money, which is the expected
result.

A few observations about the results can be
made. First, although we have only presented
summary statistics, one can observe similarities
between the individual price estimates made by

Tuble 5. Results of averaging the Black-Scholes and
neural network estimates, out-of-the-money

Week beginning MSE MAD MAPE
April 23 0,108835 0.299466 25.21678
May 7 0.040011 0.170364 9.703556
May 21 0.855436 0.430711 12.11847
June 4 0.061369 0.143322 4.920285
June 18 0.318628 0.330394 16.56730
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Tuble 6. Qut-of-the-money, paired samples comparison

A. Paired samples comparison with Biack—Scholes
Market

Black-Scholes  price Differences
Mean 396412 3.45751 0.306807
Yariance 3.88913 3.37354 0.72131

Sud. deviation  2.42675 2.36084 (.8493
95% confidence intervals for differences:

Mean: {0.394979, 0.618635)

Variance: {0.604129, 0.876435)

Std. deviation: {6.777257. 0.936181)
Sample size N =122

B. Paired samples comparison with neural networks

Market
Network price Differences
Mean 3.33894 3.45731 ~0,118374
Variance 4.84811 5.57354 §.23783
Std. deviation  2.20184 2.36084 0.487678

95%% confidence intervals for differences:
Mean: (—-0.182587, —0.0541612)
Variance: (0.199193. 0.288978)

Std. deviation: (§.44631. 0.337566)

Sample size N =224

Tuble 7. In-the-money, paired samples comparison

the two models. Each model has difficulty com-
puting prices when the trades are deep in-the-
money. This is expected for the neural network
because the majority of trades are close to at-the-
money, and thus there are insufficient examples
to present to the network for these cases. Sec-
ondly, we would not expect to achieve results
with the neural network that are significantly dif-
ferent than those of Black—Scholes if many trad-
ers are using the Black-Scholes model and the
market prices reflect their strategies. The neural
network is only capable of learning the relation-
ships that are embedded in the observations. The
neural network exhibited a bias of underpricing
the options and in fact may be best utilized as
input into another pricing mechanism, or when
averaged with the overpriced Black—Scholes es-
timate.

6. Summary and Conclusions
This empirical examination of the Black-Scholes

option-valuation model and the neural network
option-pricing model leads to some interesting

A. Paired samples comparison with Black—Schofes

Market
Black-Scholes price Differences
Mean 21.4778 21.58 -0.102209
Variance 104,888 {01.118 1.41013
Std. deviation $0.2415 10.0557 1.1875
935%% confidence intervals for differences:
Mean: {—-0.253529, 0.0491108)
Variance: {1.18749, 1.70225)
Std. deviation: (1.08972, .3047)
Sample size N =239
B. Paired samples comparison with neural networks
Market
Nerwork price ) Differences
Mean 21.0799 21.5785 —0.498506
Variance 95.9599 100.656 1.7859¢
Std. deviation 9.79591 10.0328 1.33638

959 confidence intervals for differences:
Mean: {—0.668798, —0.328215)
Variance: (1.50392, 2.15585%)

Std. deviation: {1.22634, 1.46828)

Sample size N =239
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conclusions. While both models perform best
when estimating prices close to at-the-money,
the Black-Scholes makes greater overpricing er-
rors deep-out-of-the-money. showing many more
outliers. A common result emerges for in-the-
money cases. with both models consistently un-
derpricing options. However. for both in- and
out-of the money prices, the neural network out-
performs the Black-Scholes model in about 50%
of the cases examined. as measured by the mean
squared error.

Our results demonstrate that the neural net-
work methodology offers a valuable alternative
to estimating option prices to the traditional
Black—Scholes model. For out-of-the-money es-
timates, better results were obtained by averag-
ing the prices from the two models. The evidence
reported here is encouraging, particularly in view
of the essentially undisputed superiority of the
Black-Scholes model. Analytically, it is inter-
esting that the well-developed methodology of
Black—Scholes, with its explicit formuta for pric-
ing options, derived using sophisticated financial
arbitrage arguments and advanced stochastic cal-
culus techniques, can actually be approximated
by neural networks.

There are several limitations that may restrict
the use of neural network models for estimation.
There is no formal theory for determining opti-
mal network topology, and therefore, decisions
like the appropriate number of layers and middle-
layer nodes must be determined using experi-
mentation. The development and interpretation
of neural network models requires more exper-
tise from the user than traditional analytical
models. Training a neural network can be com-
putationally intensive, and the resuits are sensi-
tive to the selection of learning parameters, ac-
tivation function, topology of the network, and
the composition of the data set.
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