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Abstract

The October 1987 stock market crash has challenged
the efficient market hypothesis and led to the emergence
of a new and competing model of stock price time series.
This new approach supports a non-random underlying
structure and is labeled chaotic dynamics. If a neural
neswork can be constructed which determines market
prices better than the random walk model, it would chal-
lenge the efficient market hypothesis and support those
who claim that they have found statistical evidence that a
chaotic dynamics structure underties the marker. This pa-
per constructs a neural network which lends support to the
deterministic paradigm.

1. Introduction

On Black Monday, October 19, 1987, in less than four
hours, the US stock markess lost 1.5 trillion dollars -- five
timmes the amount of the US annual budger deficit at that
time. Since this dramatic and surprising 23% decline, as
measured by the S&P 500 Index, researchers have intensi-
fied their efforts to characterize the behavior of stock mar-
ket prices. Is the behavior of the market structured? For
a tong time, it was believed that price changes were, to a
large extent, random [Kendall (1953)]. However, the Cc-
tober 1987 stock market crash challenged the then prevail-
ing financial models of the random walk and led to the
emergence of a new and competing mode! of stock price
time series. This new approach supports a non-random
underlying structure and is labeled chaotic dynamics.

The chaotic dynamics approach is a deterministic
model which yields a time series behavior that appears
random when in fact such a series is generated by 2 non-
linear deterministic equation. Sometimes smail input
changes can produce very divergent outpus, causing a
seemingly orderly system 10 become chaotic. The chaos
appears to be random and unpredictable while it is actually

following strict mathematical principles. Although deter- -

ministic, chaotic dynamics, when graphed, resembles a
random walk. Preliminary statistical evidence has not
succeeded in rejecting the presence of ¢haos in the S&P
500 Index series [Scheinkman and LeBaron {1989), Peters
(1989)]. The possibility that the underlying dynamics of
the S&P 500 might follow, over some time-frame, a
modet of low order, nonlinear, deterministic chaos, moti-
vates the search for a neural network which can detect the
existence of such a structure [Malliaris {1994)].

Neural networks, built to pattern the way a brain

tearns, can develop a represeniation of variables and their
reiationships without requiring that this relationship be
specified in advance. If a neural nerwork can be con-
structed which predicts marker prices, this would imply
that the nerwork has discovered an underlying determinis-
tic structure in the data, Such a result would challenge the
random watk hypothesis since any deterministic forecast-
ing technique should do no better than chance if the ran-
dom walk model is true.

The implications of this investigation are quite signifi-
camt for several reasons. First, the results obrained utiliz-
ing neural networks should provide evidence as to the ap-
propriateness of one of the wo alternative paradigms:
random walk or chaotic. As White (1989) has suggested,
neural networks can be applied to advance our empirical
understanding of applied disciplines, Second, support for
the chaotic paradigm would imply that active management
of an S&P 500 portfolio is possible since it wouid have
been demonstrated that the S&P follows a non-linear de-
terministic model, at least during certain time-frames.
And third, if a neural network can be developed to outpet-
form the random walk, then researchers would be encour-
aged to search for expressions linking the unknown but
deterministic pattern of the S&P 500 1o the explanarory
variables.

2. The Random Walk Model

Random walk is a statistical term used to describe dy-
namic behavior. * In its simplest formulation we define the
sequence of prices, denoted by {p(t): 1 = 0, 1, 2, ..} to
foilow a random walk if

plt+1) = p(t) + eft+i) H

where eft+[) is the value obtained from sampling with
replacement from a certain distribution with a given popu-
lation mean u and a variance of of. Equation (1)
expresses tomorrow’s price as a random departure from
today's price, or equivalenty, the price change between
today and tomorrow, i.e., pli+i) - p(t), as random. It is
usually assumed that u = 0.

The notion of a random walk has its methodological
foundation in probability theory. Probability theory ana-
lyzes events whose outcome is uncertain in contrast to de-
terministic calculus where a relationship between the de-
pendent and independent variables is exact. Long before
the efficient market hypothesis was conceived, formulated
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and tested, the random watk model was utilized to convey
the notion that stock prices cannot be systematically fore-
casted [Roberts (1959)].

Earlier observations of the random behavior of stock
market prices and their modeling using the random walk
paradigm eventually directed researchers to seek explana-
tons for such a statistical phenomenon. Thus, the effi-
cient market hypothesis was developed to rationalize the
random walk behavior. This hypothesis claimed that the
current price pfr) fully and correctly reflects afl relevant
information and because the flow of information berween
now and next period cannot be anticipated, price changes
are serially uncorrelated.

Though numerous studies have confirmed market effi-
ciency, several studies have rejected it [Pardo {1992,
Bauer (1994)]. The rejections of the random walk
paradigm were considered to be anomaties by efficient
hypothesis researchers, However, the October 1987 stock
market crash caused a serious reevaluation of the efficient
market hypothesis. Actually, numerous authors are cur-
renily expressing their skepticism about the ability of the
theory to explain such a major decline in the absence of
any fundamental change. Shleifer and Summers {1990}
are quite critical and they claim that “the stock in the effi-
cient market hypothesis — at least as it has been tradition-
ally formulated — crashed along with the rest of the mar-
ket on October 19, 1987.7

3. Determinism: The Chaotic Dynamics

Methodology

If the random walk modet is not a satisfactory descrip-
tion of stock price behavior and if prices move without
any obvious change in the fundamentals of the economy,
what methodological alternatives exist 10 explain the ob-
served price patterns? To answer this question, a handful
of quantitative economists investigated the deterministic
methods of Ruelle and Takens (1971) who studied the
physical problem of turbulence. These authors and the
numerous physicists who followed them developed a very
active field of current research called chaotic dynamics.

We do not wish to diverge into the details of chaos
theory. They are skillfully presented in Gleick (1987),
Vaga (1990) and elsewhere. Instead, we will offer rapidly
a definition and move on to the contribution of neural net-
works. Consider a real-valued function f:iR R.  Denote
by flx) = fIftx)] (i.e., the function applied to itself), £}
= f(fff(x)]}, and in general let F'(x) mean the function
fIf-(e)]. We are interested in the time series generated
by this function starting from some arbitrary x; € R, The
time series which begins at x,takes the values

Xou 08, Pl%ahe vor %01 oees )

fort =0, 1, 2,.... n. For (2)1w0 describe a chaotic
function it must satisfy three requirements [Devaney
{1986)].

The most imporant requirement is sensitive depen-
dence on initial conditions. This condition says that there
are time series that start very close to each other but di-
verge exponentially fast from each other. Put differently,
given a state, x, and some very close neighbor, x', "(x)
and j*(x") will diverge exponentially {from each other over
time as you increase 7.

The methodology for detecting chaotic dynamics in
stock price changes frequently uses the Grassberger and
Procaccia (1983) correlation integral to compute the cot-
relation dimension. Several studies have computed the
correlation dimension for the S&P 500 Index. For exam-
ple, Scheinkman and LeBaron (1989) concluded that the
correlation dimension for the S&P 500 Index appeared to
be about 6 or 7, implying that such an index has nonlinear
structure. The market may follow severai different modes
(stochastic, chaotic, etc.) and there is evidence that all of
these modes exist. Bur the evidence of some unknewn
underlying structure motivates the search for nonfinear be-
havior through neural networks [White (1988)].

4. The Backpropagation Neural Network

Approach

A neural network uses an abundance of input data that
require categorizing and interpreting. It is not necessary
to specify an underlying structure, as the network infers
the patterns by generalizing from the interaction of the
inputs. One type of architecrure, or network structure,
consains layers of nodes (also called neurons ot processing
elements) with weights and connections. The layers in-
clude an input layer, an output layer, and one or more
interior layers called the middle or hidden layers. Signals
travel via connections through the network from the input
layer to the hidden layers to the output layer. Each node
of each layer is connected to each node of the next layer.

Each connection between neurons has a numerical
weighe, either positive or negative, associated with it
which is multiplied times the data coming from the previ-
ous layer node to which it is connected. This weight rein-
forces or inhibits the effect of the previous node on the
next layer node. The node applies a function to the sum
of the weighted inputs and computes one output signal.
This function, called a transfer funcrion, is specified be-
fore running the network and cannot be modified during
the running of the neural network. The most commonly
used transfer function in a backpropagation-trained net-
work is the sigmoid function. This function is a mono-
tonic, semi-linear function which is continuously differen-
tiable.

The backpropagation training process involves two re-
peated phases: the forward phase and the backward
phase. During the forward phase, the input is sent for-
ward through the nerwork, generating an output value for
the final layer node. The difference between what the
actual output should be and the network’s output is com-
puted. In the backward phase, the computed ecror is used
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and weights are changed in proportion o the error times
the input node signal. After weight adjustment, the dara
is again senc through the network, and the process contin-
ues umil the difference of each output of the network and
the actual value is below some specified level.  For a
detailed expianation of the training process, see
Rumelhart, et. al. (1986), and for a collection of papers
applying such methods to finance, see Trippi and Turban
(1993). ‘
A generally recommended method for assessing the
true unbiased amount of error in a neural network model
is the use of cross-validation [Weiss and Kulikowski
{1991); Kuhn and Herzberg (1991)]. To use cross-valida-
tion, the data set must be divided into k distinct sets of
about the same size. Each set is used indeperdently for
Testing while the remaining data is utilized for training the
network. Bach training and testing of the network will
result in a final error amount in each set. The average of
these arrors over all the k sets is an almost unbiased esti-
mator of the true error rate {Weiss and Kulikowski
(19913].

5. Data

Weekly data have been collected from each Friday for
two years, 1989 and 1990, on ten variables, including:
the S&P 300 closing Index, the three month Treasury Bilt
interest rate, the thirty year Treasury Bond inmtersst rate,
weekly New York Stock Exchange volume, Money Sup-
ply as measured by both M1 and M2, Price/Earnings ra-
tio, Gold price, Crude Oil price, and the CBOE put/call
ratio. The stock market is influenced by expectations of
the traders, fundamental measures of economic activiry
and technical factors such as trading volume. Some repre-
senrarive references that discuss the selection of these
variables are Estrefla and Hardouvelis (1991), Fama
(1990) and Malliaris and Malliaris (1992).

6. Comparison Process

The efficient market hypothesis claims that the best
estimate of a value for a following period is expected to
be the same as the value in the current period. Since the
best estimate of tomorrow's expected price is today’s ac-
tual price, to have a baseline amount against which w0
compare the performance of the neural network, we cal-
culated the difference between these two as the numbers
to “beat” if the random walk hypothesis is to be chal-
tenged. The results are calculated for the same ten testing
periods used for the network cross-validation and shown
as the Mean Absolute Deviation (MAD), Mean Square
Error (MSE) and the Pearson product-moment correlation
between expected and acrual output, After using the con-
structed neural network to generate output for the same
weeks, the same statistics are also calculated for the net-
work and actual differences. For the neural network to do
a better job predicting than the random walk hypothesis,
these comparison statistics must outperform those gener-

ated previously more than 50% of the time.

7. Neural Network Methodology

The neural nerwork was built and refined using a com-
mercial neural network development system which imple-
ments a multilayer perceptron (MLP) using the backprop-
agation training algorithm. It includes a feature that uti-
fizes genetic algorithms to assist in the selection of optimal
nerwork architectures during the training process. When
setting up a neural network, one must decide on how
many nodes to have in the input and hidden layers. Be-
cause a standard MLP cannot “remember” data from a
previous input data vector in the sense of a time series, it
is imporzant to include in each vector additional samples
of the time series to give the setwork this knowledge.
Each of the data input variables included two additionat
samples of its series, tripling the number of input nodes.
Input nodes were also included for the week of the month
and the month of the year. The output node was the fol-
lowing Friday's value of the S&P Closing Index. That s,
the network was structured to give an estimate for the
following Friday's S&P 300 Index.

Tn order to determine the optimal number of nodes in
the hidden layer or layers, the program’s genetic algo-
rithm features were utilized. This program tests atl possi-
ble networks within user-specified parameters. The aum-
ber of hidden layers was varied berween 1 and 2, with the
number of nodes in each layer varying from 2 to 45. The
training tolerance, originaily set at the default value of .1,
is 2 number used to compare network output io acruai val-
ues (data has been scaled to be berween 0 and 1). If the
difference between the two is less than the tolerance, the
fact is classified as “good”. When the network can judge
alt the training facts as good, i stops training, i.e., it has
converged. Lowering the tolerance forces e network to
work a little harder: Convergence will take longer but the
final error should be smaller and the correlation berween
output and actual values in the testing set may be higher.
The training tolerance was lowered to 0.07. That is, no
neswork output would be classified as good if its scaled
absolute difference from the scaled actual output was
greater than 0.07.

Statistics were recorded on each nerwork configuration
which allowed for comparison between the configurations.
The network with the lowest Root Mean Square Error and
the highest correlation had the configuration of 2 hidden
lavers with 24 nodes in the first hidden layer and 8 nodes
in the second hidden layer.

Once the number of layers and nodes per layer was
decided, the weights assigned to cach node were adjusted
to give the best performance. Initially, weights are ran-
dom; they are refined through an evolutionary process.
This was done using the program's genetic algorithm fea-
rures to evolve the trained network. In this process, the
weights are mutated and crossed over, based on theories
of genetic evolution, to see whether a child network can
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1

Data | Model MAD (normalized) MSE {normalized} Correiaiion
Set

A network 2633 (.126) 14.083 (0.675) (.9895
random walk 8.158  {.295) 53.203 (2.547) (.9629

B network 2123 {.102) 5.897 {0.283) (.5985
random walk 4.887 (.234) 30.567 {1.465) 0.9580

C network 2.506  {.120) 10.236 (0.490} 0.9848
random walk 6.552  (.314) 61.250 (2.9385) 0.9020

D | network 2908 (.193) 10.449  (0.501) 0.9894
random walk 3746 (.178) 21.952 {1.082) 0.9876

E network 4,072 (.195) 28.987 {1.389) 0.9710
randam walk 5683 (271) 46.875 {(2.248) (.9644

F network 3.087 {148) 13.132 (0.629} 0.9945
random walk 3.406 (187) 22.869 {1.096) 0.9838

G network 4000 (.192) 21.396 (1.025) 0.9599
random walk 68.539 (.313) 50.489 (2.419) 0.9385

H network 3679 (176 21.184 {(1.015) 0.9723
random walk 4806 (.230) 29.089 {1.398) 0.9708

i network 548  (170) 17.959 (0.861) 6.9750
random walk 5.111  (.293) 61.577 {2.950) 0.9202

J network 3.060 {.147) 12.718 {0.609) 0.9810
random walk 5036 (.241) 35.194 (1.688} 0.9465

Table 1. Comparison statistics for output Data Model MAD (normalized) MSE (normalized) Correlation Set

be evolved with the same node structure as the parent, but
with superior weigits. The mutation rate was set at 10%,
the crossover rate at 50% and each child nerwork was run
100 times to polish the weights. The resulting best
weights were saved and used as the weights of the net-
work.

After the structure of the network was determined, the
dara set was randomized and divided into 10 sets of data,
each with 10 rows. This was done in order to use cross-
validation to better estimate the tru¢ error. Each set was
used, in turn, as a testing set, while the necwork was
trained on the remaining data. Using cross-validation
techniques, the RMS errors and the correlations between
nerwork output and actual S&P Index values were calcu-
lated for each of the ten testing sets. The average RMS
error, the almost unbiased estimate of the irue error,
across all the sets was 0.046 (on scaled dara), with an
average correlation of 0.964.

8. Results

The MAD, MSE and correlation for each of the ten
non-overlapping sets were calculated, comparing the ac-
rual value of the S&P to the efficient market hypothesis,
which expects the next period’s value to be equal to today,
and to the output from the neural network. The neural
neswork output for each of the sets was generated on the
testing set using the network which had been trained on
the corresponding training set. The results are shown in

Table 1 as raw score values and, in parentheses, as nor-
matized by the standard deviation of the targets. Figures
1 and 2 plot the vaiues generated by each model and the
S&P 500 Index. As can be seen for each testing set, the
neural network outperformed the random waik modet in
each category. The average MAD for the network was
3.167, as opposed to 6.188 for the random waik. The
average MSE for the network was 15.609, as opposed to
41.32 for the random walk. We interpret such results t0
offer further evidence that the S&P Index may be driven
by low dimensional neisy chaotic dynamics.

Conclusions

This paper has been motivated by the recent difficul-
ties of the efficient market hypothesis to explain sigmifi-
cant changes in stock returns that have occurred without
corresponding major changes in the fundamentals of the
economy. More specifically, we have argued, as have
other financial researchers, that the October 1987 stock
market crash, to this date, has not been reconciled with
the efficient market hypotheses. While numerous re-
searchers have criticized the random walk behavior and
have sought evidence of a deterministic structure in stock
market returns, no theoretical framework currently exists
that describes the stock returns in a deterministic way. If
such 2 structure were to be identified, phenomenal arbi-
trage opportunities would become available.

Using two years worth of weekly data of stock returns,
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along with several carefully selected variables, we have
used backpropagation neural networks and cross-valida-
tion techniques to heip us gain some evidence in support
of either the deterministic or random walk paradigm. The
strong evidence that in ten out of ten sets of data, neural
nerworks have outperformed the random walk model can
be interpreted to be supportive of the deterministic struc-
ture of the stock market returns during our sample period.
Results of this nature are encouraging to researchers who
wish to develop deterministic theories which eventually
may replace the existing probabilistic paradigm. For
traders, who wish to build predictive networks, the set of
input data may need to be tonger [Thomason {1994) sug-
gests a minimum of four years.]

Although the development of such deterministic mod-
els may. take a long time to be developed, results such as

these shown here provide partial support from the neural
network methodology for deterministic chaos.
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