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Abstract 

The implied volatility, calculated using the Black-Scholes model, is currently the most 
popular method of estimating volatility and is considered by traders to be a significant factor 
in signalling price movements in the underlying market. Thus, the ability to develop 
accurate forecasts of future volatility allows a trader to establish the proper strategic 
position in anticipation of changes in market trends. A neural network has been developed 
to forecast future volatility, using past volatilities and other options market factors. The 
performance of this network demonstrates its value as a predictive tool. 
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1. Introduction 

The desire to forecast volatility of financial markets has motivated a large body 
of research during the past decade [lo]. Volatility is a measure of price movement 
often used to ascertain risk and to signal large moves in the underlying markets [3]. 
Relationships between volatility and numerous other variables have been studied 
in an attempt to understand the underlying process so that accurate predictions 
may be made [4,7,11,14,18]. The predictability of market volatility is important for 
accurate valuation of stocks to determine expected market return [17]. Hull and 
White [12] showed that profits can be earned by trading on market information 
based on changes in volatility. Prediction of volatility is critical in designing optimal 
dynamic hedging strategies for options and futures [1,9]. Options traders use 
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estimates of volatility to predict closing prices, to determine the optimal position to 
take early in the day. Recent examples of options traders capitalizing on a strategy 
based on a prediction of high volatility occurred in August, 1993, in the silver and 
grains markets [3]. 

The purpose of this research is to present a neural network which accurately 
forecasts the volatility most often used by traders, specifically, implied volatility 
calculated with the Black-Scholes formula. Neural networks, which have been 
shown to effectively model nonlinear relationships, prove to be a useful approach 
in predicting nearby options volatility in all cases tested and can thus be used to 
develop reliable forecasts. 

The paper is organized as follows. In Section 2, we present the concepts of 
implied and historical volatility and show how each is computed. This is followed 
by a general discussion of neural networks as prediction models. The data set and 
methodology used to develop the predictions for each model are presented in 
Section 4. Development of the neural network models for volatility prediction is 
detailed in Section 5. Section 6 provides the results of the networks and compares 
the predictions to the implied volatility estimates. A discussion of the results is 
presented in Section 7, along with suggestions for future research. 

2. Calculating historical and implied volatilities 

In their seminal work on pricing options, Black and Scholes [2] assumed that the 
price of the underlying asset follows an Ito process 

dS/S=p dt+a dZ (1) 

where dS/S denotes the rate of return, p is the instantaneous expected rate of 
return, u is the expected instantaneous volatility and 2 is a standardized Wiener 
process, or dZ is a continuous-time random walk. The Black-Scholes option 
pricing formula for calculating the equilibrium price of call options is 

C=S.N(d,) -Xe-‘%V(d2) (2) 

where C is the market price to be charged for the option, N is the cumulative 
normal distribution, T is the number of days remaining until expiration of the 
option expressed as a fraction of a year, S is the price of the underlying asset, r is 
the risk-free interest rate prevailing at period t, X is the exercise price of the 
option and d, and d, are given by 

d =ln(G)+(r+f)*T 

1 
OJT 

(3) 

(4) 

and 

d,=d,-afi 
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where o2 is the variance rate of return for the underlying asset. For any time 
interval [0, t] of length t, the return on the underlying asset is normally distributed 
with variance a2t. 

Their formula expresses the call price C, as a function of five inputs 

c = C( s, x, T, u, r) (5) 

Observe that the p of Eq. (1) does not appear in (5). The mathematical derivation 
of the call option pricing formula as shown in [13] or [15] shows that arbitrage 
requires that the per unit of risk excess returns between two appropriately 
designed portfolios must be equal. Making the necessary substitutions in this 
arbitrage relationship, the term containing p drops out. With p now out of the 
picture and with four of the five remaining variables directly observable, an 
estimate of the asset’s volatility u in (5) becomes the focal point of attention for 
both theorists and traders. 

There are two main approaches to estimating and predicting the nonconstant g: 
the historical approach and the implied volatility approach. The historical ap- 
proach, based on the statistical definition of volatility, is the simplest because 
tomorrow’s volatility a, + 1 is an estimate obtained from a sample, of a given size, of 
past prices of the underlying asset. Suppose that the sample size is IZ and let 

denote daily historical prices for the underlying asset. To get an estimate for a,,,, 
first compute daily returns, r,_;, i = 0,. . . , n - 2, where 

rt_i = ln(st-i) - ln(s,_,_,). 

For a sample of n historical prices, we obtain (n - 1) rates of daily return. The 
annualized standard deviation of these rates of return is defined as the volatility 
and called historical volatility and is used as an estimate of ot+ r. The nearby 
historical volatility uses 30 days of data, the middle historical volatility uses 45, and 
the distant historical volatility has 60 daily prices. 

An obvious problem with the historical approach is that it assumes that future 
volatility will not change and that history will exactly repeat itself. Markets, 
however, are forward looking and numerous illustrations can be presented to show 
that historical volatility does not always anticipate future volatility. A better 
estimate, the one most used by traders to price options, comes from the Black- 
Scholes option pricing model itself 151. 

Simply stated, supporters of implied volatility claim that tomorrow’s volatility 
u,+t can only be estimated during trading tomorrow, i.e. in real time. As option 
prices are being formed by supply and demand considerations, each trader assesses 
the asset’s volatility prior to making his or her bid or ask prices and, accepting the 
consensus price of a call as a true market price reflecting the corporate opinions of 
the trading participants, one solves the Black-Scholes model for the volatility that 
yields the observed call price. When volatility is calculated in- this way, it is called 
the implied volatility, with the adjective ‘implied’ referring to the volatility estimate 
obtained from the Black-Scholes pricing formula. Unlike historical volatility, which 
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uses past returns, the implied volatility is forward-looking to the stock’s future 
returns from now to the time of the expiration of the option. This implied volatility 
technique has become the standard method of estimating volatility at the moment 
of trading. 

3. Neural networks for prediction 

Neural networks are an information processing technology which model mathe- 
matical relationships between inputs and outputs. Based on the architecture of the 
human brain, a set of processing elements or neurons (nodes) are interconnected 
and organized in layers. These layers of nodes can be structured hierarchically, 
consisting of an input layer, an output layer, and middle (hidden) layers. Each 
connection between neurons has a numerical weight associated with it which 
models the influence of an input cell on an output cell. Positive weights indicate 
reinforcement; negative weights are associated with inhibition. Connection weights 
are ‘learned’ by the network through a training process, as examples from a 
training set are presented repeatedly to the network. Each processing element has 
an activation level, specified by continuous or discrete values. If the neuron is in 
the input layer, its activation level is determined in response to input signals it 
receives from the environment. For cells in the middle or output layers, the 
activation level is computed as a function of the activation levels on the cells 
connected to it and the associated connection weights. This function is called the 
transfer function or activation function and may be a linear discriminant function, 
i.e. a positive signal is output if the value of this function exceeds a threshold level, 
and 0 otherwise. It may also be a continuous, nondecreasing function. Feedforward 
networks map inputs into outputs with signals flowing in one direction only, from 
the input layer to the output layer. 

While there are dozens of network paradigms, the backpropagation network has 
frequently been applied to classification, prediction, and pattern recognition prob- 
lems. Financial applications of neural networks include underwriting [6], bond-rat- 
ing [8], predicting thrift institute failure [20], and estimating options prices [16]. 
The term backpropagation technically refers to the method used to train the 
network, although it is commonly used to characterize the network architecture. In 
this learning algorithm, mean squared error and gradient descent are employed to 
determine a set of weights for the trained network. At each iteration, current 
weights are updated by minimizing the mean squared differences between the 
actual response of the system to a given example and the desired response. The 
nonlinear response functions generate gradients of the error function with respect 
to the weights and the chain rule is used to determine the appropriate weight 
changes which propagate back through the layers of the network. For more details 
pf this method, see [19]. Currently, a number of variations on this method exist 
which overcome some of its limitations. 

Nonlinear, multilayer, feedforward networks differ from traditional modelling 
techniques in several ways. Relationships between inputs and outputs are learned 
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during a training process in which the network is repeatedly presented with 
historical examples. Neural networks possess the ability to approximate arbitrary 
mappings with no apriori assumptions about the nature of the underlying model 
required. Also, no assumptions about the distributions of the variables are re- 
quired and the variables may be highly correlated. 

4. Data and methodology 

Data have been collected for the most successful options market: the S&P 100 
(OEX), traded at the Chicago Board Options Exchange. Daily closing call and put 
prices and the associated exercise prices closest to at-the-money, S&P 100 Index 
prices, call volume, put volume, call open interest and put open interest were 
collected from the Wall Street Journal for the calendar year 1992. The data is 
organized into trading periods, with each period beginning on the first trading day 
after the third Friday of a month and ending on the third Friday of the following 
month. Data from January 1, 1992 through June 19, 1992 was used to develop 
training sets for the neural network forecasts made for trading periods beginning 
on June 22, 1992. 

The historical volatility used an Index price sample of size 30 and was computed 
for each trading day in 1992. We used the Black-Scholes model to calculate 
implied volatilities for the closest at-the-money call for three contracts: those 
expiring in the current month, those expiring one month away, and those expiring 
two months away (nearby, middle, and distant, respectively). Thus, we have 
approximately 250 observations in each series of volatilities for use in our study. 

The historical and implied volatility for the nearby contract for June 22 through 
December 30, 1992 are shown in Fig. 1. As can be observed, the historical estimate 

0.2500 1 

Implied Volatility 

., 
Histor1c.31 Volatility 

21 31 41 51 61 71 91 91 101 111 121 131 

Fig. 1. Graph of implied and historical volatilities. 
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significantly underestimates the volatility used by most traders, i.e. the implied 
volatility. Since the historical volatility is an average based on returns from 30 
preceding days, it is not surprising that the estimate smoothes out the peaks, giving 
a value for each day which is less variable, and thus less sensitive to daily market 
fluctuations. The implied volatility for any given day uses only trading information 
from that day, not a previous time period, to generate a value. 

The difference in the historical and implied volatilities can be seen by calculat- 
ing the MAD (mean absolute deviation) and MSE (mean squared error> over this 
period. The MAD and MSE from June 22 through Dec. 30 were 0.0331 and 
0.0016. The proportion of times which the historical volatility correctly matches an 
increase or decrease in implied volatility is 0.4439, i.e. a little less than half of the 
time. 

A neural network was developed to forecast implied volatility and tested on 
seven independent out-of-sample forecasts for the trading periods between June 
22 through December 30,1992. For each of the seven periods, MAD, MSE and the 
number of correct directions of the forecast were calculated. 

5. Development of the neural networks 

To develop a neural network which is capable of generalizing a relationship 
between inputs and outputs, the training set selected must contain a sufficient 
number of examples which are representative of the process which is being 
modelled. Therefore, the neural network models developed to predict volatility 
were trained with data sets from January 1 through June 19 and used to make 
predictions for seven separate trading cycles beginning with June 22 and ending 
December 30. All prior data was used when predicting the volatility for the next 
trading period. Predicting the volatility for the next period is a rather rigorous test 
of the forecasting capabilities of the network. 

5.1 Selection of input variables 

The selection of the input variables is a modelling decision and one which can 
greatly effect network performance. While neural nets can approximate a wide 
range of functions, training time can be reduced if the data is preprocessed to 
reflect known relationships. This relieves the network of the task of mapping 
simple arithmetic functions during training so it can devote more time to discover- 
ing higher order relationships. There is no well-defined theory to assist with the 
selection of input variables and heuristic methods are employed. One approach is 
to include all the variables in the network and perform an analysis of the 
connection weights or a sensitivity analysis to determine which may be eliminated 
without reducing predictive accuracy. An alternative is to begin with a small 
number of variables and add new variables which improve network performance. 
In this research, the latter approach was used and variables were selected using 
financial theory, sensitivity analysis, and correlation analysis. Table 1 is a list of all 
the variables derived from the data set and tested. 
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Table 1 
Definition of inuut variables 

VoLt-3 volatility, lag 3 
VOLt-2 volatility, lag 2 
VoLt-1 volatility, lag 1 
VoLt current volatility 
CLOSECH change in daily closing price 
DAYS days to expiration 
VOLMID middle volatility 
VOLDIST distant volatility 
CSTR + MKTN current call exercise price plus market price 
CSTR + MKTM middle market call exercise price plus market price 
PSTR + MKTN current put exercise price plus market price 
PSTR + MKTM current put exercise price plus market price 
CHPUTOPEN change in put open interest 

All variables reflect closest to at-the-money prices for nearby markets, where contracts expire in the 
current month and middle’markets, where contracts expire one month away. 

A training set consisting of observations from January 1 to November 20 was 
used to perform these experiments. An out-of-sample test set consisted of the 
observations from November 23 to December 30. The first networks tested input 
variables representing volatility, lagged from 3 to 7 periods. A lag period of four 
resulted in the lowest mean squared error (MSE). The MSE for networks devel- 
oped with 4, 5, and 6 lags is shown in Fig. 2. Financial variables were developed 
next, to maximize information content in the input variables. Variables were tested 
and if their inclusion reduced network error, they were added to the network. 
While the closing price itself did not improve performance, a variable which 
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Fig. 2. Comparison of networks 
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Table 2 
Neural networks and input variables 

Network # of Input variables 
middle 
nodes 

1 3 volatility, 4 lags 
2 4 volatility, 5 lags 
3 4 volatility, 6 lags 
4 4 VOLt-3, VOLt-2, VOLt-1, VOLt, CLOSECH, DAYS 
5 6 VOLt-3, VOLt-2, VOLt-1, VOLt, CLOSECH, DAYS, VOLMID, VOLDIST 
6 7 VOLt-3, VOLt-2, VOLt-1, VOLt, CLOSECH, DAYS, 

CSTR + MKTN, CSTR + MKTM, PSTR + MKTN, PSTR + MKTM 
7 5 VOLt-3, VOLt-2, VOLt-1, VOLt, CLOSECH, DAYS, 

CSTR + MKTN, CSTR + MKTM, PSTR + MKTN, PSTR + MKTM, 
CHPUTOPEN, VOLMID, VOLDIST 

8 7 VOLt-3, VOLt-2, VOLt-1, VOLt, CLOSECH, DAYS, 
CSTR + MKTN, CSTR + MKTM, PSTR + MKTN, PSTR + MKTM, 
CHPUTOPEN, VOLMID, VOLDIST 

9 9 VOLt-3, VOLt-2, VOLt-1, VOLt, CLOSECH, DAYS, 
CSTR + MKTN, CSTR + MKTM, PSTR + MKTN, PSTR + MKTM, 
CHPUTOPEN, VOLMID, VOLDIST 

computed daily changes in the closing price did. Next, the change in closing price 
and days to expiration were tested with the volatility lags as network #4 (see Table 
2). Adding two new variables, middle and distant volatility in Network #5 reduced 
MSE. Further tests showed that the sum of current call exercise price and market 
price for puts and calls also reduced MSE. The variables included in each model, 
and MSE and MAD for each network is found in Table 2 and Fig. 2. 

A variety of other financial variables were tested and not included in the final 
network. In all, 13 variables were included: change in closing price, days to 
expiration, change in open put volume, the sum of the at-the-money strike price 
and market price of the option for both calls and puts for the current trading 
period and the next trading period, daily closing volatility for the current period, 
daily closing volatility for the next trading period, and four lagged volatility 
variables. As shown in Fig. 2, Network 8, with 7 middle layer nodes, proved to be 
the best when tested and compared to networks with 5 and 9 middle layer nodes. 

The backpropagation network developed to predict volatility has 13 input nodes 
representing the independent variables used for prediction, one middle layer 
consisting of 7 middle nodes, and an output node representing the volatility. The 
cumulative Delta Rule for training was selected, with an epoch size of 16, and 
decreasing learning rate initially set at 0.9 and an increasing momentum, initially 
set at 0.2. The networks were trained using NeuralWorks Professional IITM 
software from NeuralWare. 

A variation on the backpropagation algorithm called fast-backpropagation was 
used to improve performance by reducing the number of iterations needed to 
achieve convergence. Essentially, an error is added to the activation value prior to 
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the update of the weights. In traditional backpropagation, the gradient descent 
rule is used to update weights to decrease network error using 

Aw.? = --eS,!S-‘) 
II J 1 

In fast backprop, this becomes 

Aw.$ = -aey{xyP1) + eisP1)) 

where w,; is the weight connecting the ith neuron in layer (s - 1) to the jth neuron 
in layer s, (Y is the learning coefficent, ejsP1) is the local error at neuron i in layer 
(s - 1). This learning rule was proposed by Tariq Samad [21]. 

6. Results 

6.1 Network estimates of future volatility 

We evaluated the performance of the neural network by measuring MAD, 
MSE, and the number of times the direction of the volatility (up or down) was 
correctly predicted. These results are shown in Fig. 3 and Table 3, where compar- 
isons are made between the volatility forecasted by the network and tomorrow’s 
implied volatility. The overall MAD for the entire period was 0.0116 and the MSE 
was 0.0001. The overall proportion of correct direction predictions was 0.794. The 
correlation between the neural network forecast and the future implied volatility 
was 0.8535 with a significance level of 0.0001. 

The errors from the forecasts made for June 22 through Dee 30 are shown in 
Fig. 4. The greatest errors occur close to the expiration of a period. All but two of 
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Fig. 3. Graph of the actual implied volatility and the neural network forecast of implied volatility. 
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Table 3 
Neural network and implied volatilities 

Dates of 
forecast 

Jun 22-Jul19 
Jul20-Aug 21 
Aug 24-Sep 18 
Sep 21-Ott 16 
Ott 19-Nov 20 
Nov 23-Dee 18 
Dee 21-Dee 30 

MAD MSE 

0.0148 0.0003 
0.0107 0.0002 
0.0056 0.0001 
0.0127 0.0003 
0.0059 0.0001 
0.0068 0.0001 
0.0039 0.0000 

Proportion of 
same directions 

16/19 = 0.842 
16/25 = 0.640 
13/18 = 0.722 
19/20 = 0.950 
20/25 = 0.800 
15/18 = 0.833 
5/6 = 0.833 

- 

the 132 errors have an absolute value less than 0.03 and all but 10 are less than 
0.02 in absolute value. 

6.2 Variable analysis 

Forecasts of volatility have been reported for the final networks which included 
13 financial variables. Table 4 shows each variable and the percentage change in 
the volatility prediction for a 10% and 50% change in each input, respectively. A 
positive change indicates the volatility prediction would be higher; a negative 
change indicates the predicted value would be reduced. These percentages may be 
used to evaluate the relative impact of each predictor variable. Not surprisingly, 
DAYS (days to expiration), CLOSECH (change in closing price), and CSTR + 
MKTN (the sum of the current call exercise price and market price) were the most 
significant for predicting volatility. CSTR + MKTN should be significant since, this 

0.1 T 

0.06 

0.06 1 

-0.1 1 
Fig. 4. Graph of errors (implied volatility-network forecast); end of trading periods occurred on days 
20, 45, 63,83, 108, 126, and 132. 
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Table 4 
Percent change in volatility prediction 

10% 50% 

VOLG3 13.13 22.22 
VOLt-2 2.07 2.85 
VOLt-1 1.98 6.98 
VoLt 4.00 6.21 
CLOSECH - 11.91 - 19.10 
DAYS - 18.58 - 24.20 
VOLMID 36.57 49.28 
VOLDIST -5.21 - 11.23 
CSTR + MKTN 26.38 35.55 
CSTR + MKTM 6.53 10.13 
PSTR + MKTN 9.00 15.62 
PSTR + MKTM 8.94 12.99 
CHPUTOPEN 7.08 15.74 

sum approaches the value of the underlying asset as the days to expiration 
approach 0. An interesting result is the relatively significant impact of VOLMID, 
the volatility of the related contract which expires in the next trading period. An 
explanation is that, as the nearby contract expires, traders begin to focus attention 
on the middle contracts, which will eventually replace the expired contracts. 

7. Discussion 

The results of this study of neural networks for forecasting volatility are 
encouraging. Because historical estimates are traditionally poor predictors, traders 
have been forced to rely on formulas like the Black-&holes which can be solved 
implicitly for the real-time volatility. However, these models can only provide 
real-time estimates to the traders. Furthermore, they fail to incorporate knowledge 
of the history of volatility. The neural network model, on the other hand, employs 
both short-term historical data and contemporaneous variables to forecast future 
implied volatility, enabling the trader to take a position when the market opens 
which will provide a strategic advantage. For example, high implied volatility often 
indicates the market is about to consolidate while low volatility often signals that 
the market is preparing for a breakout. 

The neural network approach has two advantages which make it more useable 
as a forecasting tool. First, daily predictions can be made using data from previous 
trading cycles, thus providing a trading advantage. Secondly, in the cases we tested, 
the network forecasts were very accurate estimates of the volatility preferred by 
traders. 

There are several ways to extend this research. Improvement may be possible 
through experimentation with other variables and network architectures. Radial 
basis networks offer another avenue of investigation, since these have been used 
for financial forecasting. In this research, we have predicted nearby volatility. 
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However, networks for predicting middle and distant volatility may be developed, 
as well, using different variables and different network architectures. 
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