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Abstract Monthly Federal Fund interest rate values, set

by the Federal Open Market Committee, have been the

subject of much speculation prior to the announcement of

their new values each period. In this study we use four

competing methodologies to model and forecast the

behavior of these short term Federal Fund interest rates.

These methodologies are: time series, Taylor, econometric

and neural network. The time series forecasts use only past

values of Federal Funds rates. The celebrated Taylor rule

methodology theorizes that the Federal Fund rate values

are influenced solely by deviations from a desired level of

inflation and from potential output. The econometric and

neural network models have inputs used by both the time

series and Taylor rule. Using monthly data from 1958 to

the end of 2005 we distinguish between sample and out-of-

sample sets to train, evaluate, and compare the models’

effectiveness. Our results indicate that the econometric

modeling performs better than the other approaches when

the data are divided into two sets of pre-Greenspan and

Greenspan periods. However, when the data sample is

divided into three groups of low, medium and high Federal

Funds, the neural network approach does best.

Keywords Federal Funds � Modeling interest rates �
Taylor rule � Neural networks

1 Introduction

The key instrument used by the Federal Reserve (Fed) to

implement its monetary policy is the short-term interest rate

called the Federal Funds rate (Fed Funds). These rates are

announced by the Federal Open Market Committee (the

FOMC) after a closed door meeting and influence rates

around the world. Fed watchers carefully analyze the deci-

sions made by the Fed in order to anticipate the Fed’s future

moves to increase, decrease or leave unchanged the Fed

Funds. Numerous methodologies have been developed to

both model and forecast Fed Funds. For an account of some

of the methodologies that have been applied, see [5, 14].

The basic purpose of this paper is to evaluate the fore-

casting performance of monthly Federal Funds rates using

several competing methodologies. Rather than considering

every available method, we shall restrict ourselves to the

following four approaches: (1) a time series model where

Fed Funds rates are determined solely by past rates; (2) the

Taylor model where Fed Funds are functions of past

influential factors; (3) an econometric model where Fed

Funds are functions of past rates as well as influential

factors, and (4) a neural network model using the same

input variables as the econometric model. A chart indi-

cating the monthly path of the Fed Funds rates from 1957

through 2005 is shown in Fig. 1.

Sections 2 through 5 discuss each of these methodolo-

gies in detail. The data sets used for the models are
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elaborated in Sect. 6. The results from each of the models

and the results from applying these models to a test set are

discussed in Sects. 7 and 8, respectively. Lastly, in Sect. 9,

conclusions from applying the models to the data sets are

listed.

2 Time series model: Fed Funds as random walks

The time series model assumes that it is possible to forecast

the interest rate using only the previous term interest rate as

a variable input. Much research has been conducted using a

continuous-time short-term interest rate model specifica-

tion of a diffusion process such as

dr ¼ aþ brð Þdt þ rrcdz ð1Þ

where:

r short-term interest rate

a, b, c model coefficients to be determined

r standard deviation of the short-term rates

z Brownian motion

This formulation assumes that movements in interest

rates are strictly a function of interest rate levels, volatility

and noise. For investigations of such formulations, see [2].

From (1), a discrete random walk time series model can be

obtained:

rt ¼ aþ brt�1 þ et ð2Þ

where:

rt short-term interest rate at time t,

rt-1 short-term interest rate at time t - 1,

et model error term at time t with E(et) = 0 and a

certain variance,

a, b model coefficients to be determined

Depending on the date range evaluated, the value of b is

normally found to be very significant and close to 1. This

indicates that interest rates have high serial correlation.

Such a result is to be expected since, on average, interest

rates are only changed at most monthly by the Fed. In the

sections that follow, the model described in (2) will be used

as a base model on which to evaluate the effectiveness of

other models. Figure 2 shows the relationship between Fed

Funds at time t - 1 and time t, sorted by funds at t - 1 for

the time period of our data set. Notice the close to linear

relationship for all but the highest values on the figure.

3 The Taylor model: interest rates are functions

of past influential factors

The most famous Fed Funds model is the one proposed by

Taylor [15] and further evaluated in Taylor [16] and

Kozicki [8]. Taylor argued that a central bank tries to keep

the economy in equilibrium with inflation at about 2% and

output at a sustainable potential level. Taylor fitted a

regression model explaining Fed Funds as a dependent

variable of certain important macroeconomic variables

measuring the rate of inflation and the deviation of total

output from its potential. Woodford [19] named the sta-

tistical model proposed by Taylor as the Taylor rule and

also demonstrated that it can be derived analytically from a

stylized Keynesian macroeconomic model. The Taylor rule

argues that Fed Funds are determined by the Fed’s objec-

tives to promote price stability and economic growth. Thus,

the future value of the Fed Funds rate is based only on the

values of the current rate of inflation and the level of

unemployment and the equation coefficients are specified.

There is both a quarterly and monthly version. We con-

centrate on the monthly version where:

rt ¼ 2þ pt�1 þ 0:5ðpt�1 � 2Þ þ 0:5 ut�1 � 4ð Þ ð3Þ

where:

rt Fed Funds rate at t,

pt-1 lagged monthly inflation measured by CPI,

ut-1 lagged monthly unemployment rate

By rearranging terms, this equation can also be written

as:

0

4

8

12

16

20

Ja
n-

57

Ja
n-

60

Ja
n-

63

Ja
n-

66

Ja
n-

69

Ja
n-

72

Ja
n-

75

Ja
n-

78

Ja
n-

81

Ja
n-

84

Ja
n-

87

Ja
n-

90

Ja
n-

93

Ja
n-

96

Ja
n-

99

Ja
n-

02

Ja
n-

05

Date

F
ed

 F
u

n
d

s

Fig. 1 Monthly Federal Funds rates from 1957 through 2005
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rt ¼ 1þ 1:5pt�1 þ 0:5 ut�1 � 4ð Þ ð4Þ

Note that this second formulation of the equation

indicates that the Federal Funds rate should be changed

1.5 percent for each 1 percent change in inflation. It is felt

that such a forceful reaction to inflation tends to drive

future inflation to a lower value. Judd and Rudebusch [6]

show that when interest rates are not adjusted strongly in

reaction to past inflation, the result can be rampant future

inflation similar to the inflation exhibited during the era of

1970–1978. The last term focuses on the difference of the

unemployment rate from an acceptable level of 4% and

indicates that the rate should be adjusted one-half of one

percent for each one percent change of the unemployment

rate. Values of (ut-1 - 4) are referred to as excess

unemployment.

Bernanke [1] has revisited this important issue and has

argued that an inflation coefficient that is around 1.5 sends

a strong signal to market participants that the Fed is

committed to fighting inflation vigorously. This in turn

moderates inflation expectations that play an important role

to moderating actual inflation.

The Taylor rule has become the basis for comparison

and development of other policy reaction functions. Mod-

ifications to the Taylor rule include the addition of other

variables as exemplified by Clarida et al. [3]. Other con-

siderations include the use of real-time data and the

addition of expectations of future values of inflation and

output, as shown in Orphanides [11, 12]. Actually since the

original formulation by Taylor [15], economists have

modified the rule in a number of ways. A list of some of

these modifications can be found in Fernandez and

Nikotsko-Rzhevskyy [4].

Figures 3 and 4 show the paths of the two variables used

in the Taylor equation (4), that is, Unemployment Rate and

inflation as measured by the Consumer Price Index

Change.

The relationship of these two variables to the future

Federal Funds rate can be seen in Figs. 5 and 6 where each variable at t - 1 is shown versus the Federal Funds rate at

time t.

4 The econometric model: interest rates are functions

of past rates as well as influential factors

The third approach combines the two factors of the Taylor

rule with previous interest rates, that is, with the time series

model. In other words, this approach combines the random

walk and the Taylor model. Some authors call this an

extended Taylor rule while others also interpret it as a

variation of the Taylor model. By combining (2) and (3),

we obtain the following using slightly different coefficient

symbols:
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Fig. 3 Unemployment rate
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Fig. 4 CPI monthly change rate
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Fig. 5 Excess unemployment at t - 1 versus Fed Funds at t
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Neural Comput & Applic (2009) 18:37–44 39

123



rt ¼ aþ qrt�1 þ b pt�1 � 2ð Þ þ k ut�1 � 4ð Þ þ et ð5Þ

where:

rt short-term interest rate at time t

pt–1 inflation rate at time t - 1,

ut–1 – 4 excess unemployment,

et model error term at time t with E(et) = 0

and a certain variance,

a, b, k, q model coefficients to be determined

Numerous investigators have evaluated equations of this

form using past values of inflation and excess unemploy-

ment for various time intervals and various countries

including Judd and Rudebusch [6], and Clarida et al. [3].

We observe that our econometric model is just a one

equation model. Obviously, numerous multiple equation

macroeconometric models have been developed, the most

famous one being the Fed model. For a brief review of this

model and its forecasting performance, see [17]. These

authors document that when large macroeconometric

models are built and used to assist in policy formulations

the high degree of model uncertainty undermines the per-

formance of such models.

5 Interest rates can be determined by a neural network

using past rates and influential factors

Neural networks have shown much promise in various

financial applications, especially with complex problems

[9, 13, 18]. With hidden layers, a neural network can be a

non-linear estimator that uses weighted interconnected

nodes to generate a forecast. It is very dependent upon the

training data set since it adjusts its weights to optimize

performance on this training data. The final set of weights

which comprises the trained network is then used to fore-

cast values for new data. This approach has the ability to

often outperform linear models on complex data sets.

Neural networks for this study were run using the SPSS

data mining package Clementine. According to KDNug-

gets [7], the association for knowledge discovery and data

mining, Clementine was the most used commercial data

mining software in 2007. Clementine allows the user to

determine a number of settings for running the neural

network, but has a very friendly interface for the business

user with drag and drop nodes used for setting up and

running the model. The choices for changes to the built-in

model available to the user are shown in the Figs. 7 and 8.

While training, the neural network holds out a specified

randomly selected portion of the data set that it uses to

periodically check network performance on new data. In

this case, 80% of the data was used for training, with 20%

used in order to prevent overtraining.

The network this model uses contains three layers. The

input layer has one node corresponding to each input var-

iable. These inputs, as with the econometric model, are the

previous Fed Funds rate, inflation as measured by the CPI,

and excess unemployment. The output layer has one node,

the forecasted variable, Fed Funds rate.

In between these input and output layers is a hidden

layer. The hidden layer is a set of nodes with no direct

variable interpretation, but which serves to help mold the

form of the inputs to the output. Each input and hidden

layer node is multiplied by a weight that adjusts the

importance of the node. In this model, we tried a variety of

topologies. Both 1 and 2 hidden layers with from 3 to 9

nodes were run. The network needed at least five nodes in

one hidden layer in order to forecast well. Though the

Fig. 7 SPSS Clementine neural network model settings

Fig. 8 SPSS Clementine neural network expert settings
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Clementine settings allow for up to three hidden layers, the

additional layers and nodes did not significantly improve

the performance. Thus, we used the smallest network that

yielded acceptable results on most of the data, one hidden

layer with five nodes.

Once the topology was finalized, the network was set to

train a final time on the data set. In Clementine, the net-

work continues to train, if no improvement is seen, for the

number of cycles set in the Persistence option. The set of

weights that performs optimally on both pieces of the

training data set, the 80% and the 20%, is used as the final

network weight set.

6 Data

There are multiple ways to get a measure of inflation. We use

inflation measured by the CPI, monthly data for Fed Funds,

and unemployment from January 1957 to December 2005.

CPI data is annualized by calculating ln(xt/xt-12) 9 100

for each month. Percentages are adjusted to whole numbers,

for example, 4% is used as 4, not 0.04. In the Econometric

and Neural Network models, we calculate an ‘‘Adjusted

CPI’’ found by subtracting 2 from the above number (the

form in which inflation occurs in the general econometric

equation). In addition, monthly data for Federal Funds rates

and unemployment rates from January 1957 to December

2005 are used. The variable ‘‘Excess’’ was calculated as

the Unemployment Rate minus 4. That is, it measures

how far the Unemployment Rate varies from this critical

value.

The computations for each model are performed for

various subsamples of the set. These subsamples are divi-

ded first into two distinct time periods, then into three sets

by value of the current Fed Funds rate. The first two

subsamples are split based on the time that Alan Greenspan

was appointed chairman of the Fed. Since the Taylor for-

mulation came into existence after Greenspan became the

chairman of the Federal Reserve Board, we divided the

data set into the time before Greenspan held this office, and

the time during his tenure.

The data is then recombined and split into three groups

based on the value of the Fed Funds rate at time t - 1. The

values used to split the data into these subsamples are five

and ten.

Specifically, these five sets include: time prior to

Greenspan (1957 through July 1987), since Greenspan

(August 1987 through November 2005), the months where

the Fed Funds rate at time t - 1 was less than 5 (low),

between 5 and 10 (medium), and greater than 10 (high).

The resulting data sets can be seen in Figs. 9 and 10.

For each subsample, a random set of 10% of the rows was

held out from training and used as the test set. The models are

all compared by looking at their performance on these five

test sets. Sizes of each of the model training and test sets are

shown in Table 1. The test sets contain a wide range of data

values and can be seen in Figs. 11 and 12.

As explained in prior sections, not all variables are used

in all models. The random walk model uses only the cur-

rent Fed Funds number as an independent variable. The

Taylor model uses CPI and Unemployment Rate. The

Econometric and Neural Network models use Fed Funds,

CPI, and Unemployment Rate all at month t - 1. The

dependent variable for all models is Fed Funds at month t.

7 Model results

On the random walk model, Table 2 shows the model-

generated values for the intercept and coefficient on each

data set. On all but one set, the coefficient was almost 1, as

expected, and statistically significant (t-statistics are not
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Fig. 9 Data set division based on Greenspan
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Table 1 Data set sizes

Data set Training Test Total

Pre-Greenspan 319 36 355

Greenspan 197 22 219

rt-1: 0–5 219 24 243

rt-1: 5.01–10 243 27 270

rt-1: over 10 55 6 61
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reported). On the High set, it dropped to 0.879 and the

intercept increased greatly.

Table 3 contains the coefficients generated by the

Taylor model for the five data sets. It confirms the two

predictions of model coefficients. The Excess Unemploy-

ment coefficient is always negative and small, indicating a

dampening effect of excess unemployment. As excess

unemployment grows past 4, Fed Funds decrease. The

intercept values calculated for each of the data sets range

from 0.007 to 1.442 while the Adjusted CPI is sometimes

positive and sometimes negative. For the Greenspan period

we get a coefficient for the Adjusted CPI of 1.477 which is

very close to 1.5 hypothesized in (4). Other authors such as

Mehra and Minton [10] have also confirmed that the Taylor

rule describes well the Greenspan era.

Table 4 contains the coefficients generated by the

Econometric model for the five data sets. It shows only two

consistencies among the model coefficients. The Fed Funds

rate coefficient is near 1 in all cases, and the excess coef-

ficient is always negative and small, indicating a

dampening effect of excess unemployment. As excess

unemployment grows past 4, Fed Funds decrease.

The intercept values calculated for each of the data sets

range from 0.007 to 1.442 while the Adjusted CPI is

sometimes positive and sometimes negative. This model

captures the significant role of the past Federal Funds rates

in determining future ones since traditionally the Federal

Reserve follows gradual changes in Fed Funds.

Table 5 reports the order of significance of the variables

as used by the neural networks. In four of the five data sets,

the Fed Funds rate is the most significant variable. How-

ever, during times when the current rate is High, the

variable significance shifts and Fed Funds becomes the

least important of the variables.

In these models, we see that the splitting of data has

given us significantly different variable importance. There

is no one model formulation that works equally well across

all the data. However you decide to split the data, doing so

will enable you to approximate the set better.

8 Model results on test sets

The mean squared error was calculated for each of the five

models tested over each of the five subsets of data. The

training and test sets were disjoint. Results show the lowest

error amounts came from the models using all three of the

variables for input. That is, in each subset of data, the

lowest error came from either the Econometric or Neural

Network model. More information enabled the models to

approximate the target more effectively. The random walk

model was very close to the lowest error in each subset, but

never was the lowest. The Taylor model has significantly

greater errors than any of the other three, over all data
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Table 2 Random walk equation values across data sets

Pre-Gr. Gr. High Med. Low

Intercept 0.177 0.006 1.48 0.021 0.02

Coefficient of rt-1 0.973 0.995 0.88 0.995 1

Table 3 Values generated from the Taylor model across data sets

PreGreenspan Greenspan High Medium Low

Intercept 2.334 1.797 5.005 5.755 2.837

Adj. CPI 0.789 1.477 0.564 0.197 0.496

Excess unemp. 0.296 -0.935 0.91 0.161 -0.49

Table 4 Values generated from the econometric model across data

sets

PreGreenspan Greenspan High Medium Low

Intercept 0.291 0.047 1.442 0.007 0.125

Fed funds 0.965 0.994 0.862 1.002 0.983

Adj. CPI 0.019 -0.007 0.066 -0.003 0.018

Excess

unemp.

-0.035 -0.024 -0.027 -0.019 -0.022
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subsets. The results are shown in Table 6 with the lowest

error in bold.

Notice, in the results from Table 6, we see that the

Neural Network was not the best model when the data was

split simply by time period. However, when the data was

split by type based on current Fed Funds level, the Neural

Network outperformed the random walk each time, and in

two of the three sets, was best overall.

9 Conclusions

This paper has reviewed four methods for modeling the

behavior of Federal Funds. They are the standard random

walk, the Taylor rule, an econometric model that relates the

Federal Funds to fundamental variables including past

values of Federal Funds and also the neural network

approach. Using monthly data from 1958 to 2005 of several

important macroeconomic variables, the results show that

the econometric modeling performs better than the other

approaches when the data are divided into two sets of pre-

Greenspan and Greenspan. However, when the data sample

is divided into three groups of low, medium and high

Federal Funds, the neural network approach does best.

Actually, the neural network approach does best at the

extreme sets of high and low interest rates, while the

methodology based on econometric modeling performs

best in the mid-range of interest rates. This is the range of

interest rates between 5% and 10%. In fact the neural

networks identify inflation as measured monthly by the CPI

as the most relevant variable during the high Fed Funds

sample that has an appealing intuitive explanation. It is

precisely during periods of very high inflation that the

Federal Reserve increases Fed Funds both to reduce current

inflation but more importantly to reduce future inflationary

expectations. In such periods of very high inflation the role

of unemployment becomes secondary to inflation. In other

words, since the Fed cannot simultaneously reduce infla-

tion and promote growth, it often assesses the risks of

inflation versus the risks of an economic slowdown and

targets the high risks economic variable. Obviously when

inflation is very high, the risks associated with this high

inflation receive more attention compared to the risks of an

economic slowdown. The neural network has the advan-

tage over the other models to identify inflation as the high

risk variable in an environment of high Fed Funds.

The main conclusion of our work is that separating the

data set into more homogeneous segments makes it pos-

sible to improve the predictive ability of the equations.

When the split is based on the current value of the Fed

Funds rate, then the neural network methodology outper-

forms both the random walk and the Taylor rule

approaches. When the split is simply time-based, then the

econometric model is the one to use. Our models also

confirm that in the pre-Greenspan era, unemployment as a

proxy for economic growth played a more important role in

monetary policy, while since August 1987 when Greenspan

was appointed Chairman of the Federal Reserve Board,

inflation has become on average the targeted variable of

Fed Funds policies.
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