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Abstract 

 

A neural network model which processes financial input data 

is developed to estimate the market price of options at closing.  

The network's ability to estimate closing prices is compared to the 

Black-Scholes model, the most widely-used model for the pricing of 

options.  Comparisons reveal that the neural network outperforms 

the Black-Scholes model in about half of the cases examined.  The 

differences and similarities in the two modelling approaches are 

discussed.  The neural network, which uses the same financial data 

as the Black-Scholes model, requires no distribution assumptions, 

and learns the relationships between the financial input data and 

the option price from the historical data.  The option valuation 

equilibrium model of Black-Scholes determines option prices under 

the assumptions that prices follow a continuous time path and the 

instantaneous volatility is nonstochastic.   

 

1.  Introduction 

There has recently been considerable interest in the development 

of artificial neural networks (ANN's) for solving a variety of 

problems.  Neural networks, which are capable of learning 

relationships from data, represent a class of robust, nonlinear 

models inspired by the neural architecture of the brain.  Theoretical 

advances, as well as hardware and software innovations, have overcome 
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past deficiencies in implementing neural networks and made machine 

learning available to a wide variety of disciplines.  Financial 

applications which require pattern matching, classification, and 

prediction such as corporate bond rating [1], trend prediction [2], 

failure prediction [3] and underwriting [4] have proven to be 

excellent candidates for this new technology.      

In this paper, we present a neural network developed to estimate 

the market prices at closing of OEX options (options on the Standard 

and Poor's 100) using transactions data for the period January 1, 

1990 to June 30, 1990.  The neural network is a robust modelling 

technique which requires no assumptions about price distributions 

whereas the Black-Scholes model is based on the assumption that prices 

follow a lognormal distribution.  We compare the performance of the 

neural network and the Black-Scholes option pricing model with actual 

prices as reported by the CBOE (Chicago Board of Options Exchange) 

in the Wall Street Journal.  

 

2.  Option Pricing Models 

In 1973, Black and Scholes [5] proposed a model for computing 

the current market worth of an option.  The discovery of the 

Black-Scholes model was both empirically and theoretically 

significant.  Its theoretical importance came from finding a 

solution to a longstanding problem which was initially posed by Louis 

Bachelier in 1900.  He assumed that the price of the underlying asset 
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followed a continuous random walk and proceeded to price the call 

based on such an asset.  The problem with this methodology lies with 

the fact that with probability 1, the price of the asset becomes 

negative, which is not consistent with the actual behavior of stock 

prices, which never take negative values.  It took an independent 

discovery of Ito's calculus in the 1940s and 1950s to develop a 

mathematical theory for the modeling of continuous time processes. 

 This was used by Black and Scholes in their successful formulation 

and solution of the option pricing problem. 

      The empirical significance of the Black-Scholes model lies 

in its widespread use as a pricing tool on the trading floor. Trading 

began in 1973, and in less than 20 years, the volume of option trading 

has increased dramatically.  Currently, the trading volume of calls 

and puts for the OEX is around 760,000 contracts each. 

   An option is an agreement giving the holder the right to 

purchase [a call] or sell [a put] some asset at an agreed upon future 

time, called the date of expiration.  European options cannot be 

exercised before expiration, whereas American options may be 

exercised at any time prior to expiration.  The price that will be 

paid at this future date is called the exercise price of the option. 

 The market price of the option is the price paid now for the privilege 

of buying or selling the underlying asset on or before the expiration 

date.  The Black-Scholes model uses five input variables [exercise 

price of the option, volatility of the underlying asset, price of 
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the underlying asset, number of days until the option expires, and 

interest rate] to estimate the price which should be charged for 

an option.  The Black-Scholes option pricing formula for calculating 

the equilibrium price of call options is  

                                                                  

                                                                  

     

 

where C is the market price to be charged for the option, N is the 

cumulative normal distribution, T is the number of days remaining 

until expiration of the option expressed as a fraction of a year, 

S is the price of the underlying asset, r is the risk-free interest 

rate prevailing at period t, X is the exercise price of the option 

and d1 and d2 are given by  
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and 

 

                                                                  

   

 

where σ² is the variance rate of return for the underlying asset. 

 For any time interval [0,t] of length t, the return on the underlying 

asset is normally distributed with variance σ²t [6]. 

  There are seven assumptions underlying this model which assume 

ideal conditions in the market [5], [7].  They are: 

(a)  the interest rate is known and constant through time; 

(b)  the stock price follows a random walk in continuous  

 time with variance proportional to the square of the  

 stock price; thus the distribution of prices is log- 

 normal and the volatility is constant; 

(c)  the stock pays no dividends; 

(d)  the option is European, i.e. it can only be exercised  

 at maturity (expiration date); 

(e)  there are no transactions costs of buying or selling, 

(f)  the market operates continuously, and 

(g)  there are no penalties to short selling.  

d
2
=d

1
-σ T 
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For a rigorous presentation of the derivation of the Black-Scholes 

model, see [8]. 

    For the remainder of this paper and for the data we have chosen, 

the exercise price of the option is referred to as exercise price 

and is denoted by EXER; the annualized square root of the variance 

of the underlying asset is the volatility, VOL; the price of the 

underlying asset is the price of the S&P 100 index at closing, or 

simply, the closing price, CLOSE PRICE ; the interest rate used is 

the prevailing rate on treasury bills, denoted INT; and time to 

expiration of the option is the number of days to expiration, DAYS. 

 The exercise price, number of days to expiration, and closing price 

are observable.  The volatility cannot be directly observed so it 

is computed implicitly.  Most observers use the Implied Standard 

Deviation of observed option prices as an estimate of volatility 

[9].  We used at-the-money call options for this estimate and then 

used that estimate of volatility to calculate the call options for 

that day. 

Options with an exercise price equal to the closing price of 

the index are said to be at-the-money.  In the pricing of calls, 

exercise prices less than the closing price are in-the-money, and 

exercise prices greater than the closing price are out-of-the-money. 

 If the ratio of the closing price to the exercise price is less 

than [greater than] .85 [1.15] then the option is said to be 

deep-out-of- [deep-in-] the-money. 
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Since its introduction in 1973, the Black-Scholes options 

pricing model has performed better overall than any model.  The major 

alternative models have been Cox and Ross' pure jump model, Merton's 

mixed diffusion-jump model (both these models relax the continuous 

time assumption), Cox and Ross' constant elasticity of variance 

diffusion model, Geske's compound option diffusion model, and 

Rubinstein's displaced diffusion model (these last three relax the 

assumption of constant volatility).  

Galai [10] extensively surveyed results from competing models. 

 He found that no alternative model yielded better results on a 

constant basis than did Black-Scholes, even though the Black-Scholes 

did not give consistently good estimates for deep-in and 

deep-out-of-the money options.  It performs best when estimating 

market prices at-the-money. 

Chesney & Scott [9] in a test of 5 models, some variations of 

the Black-Scholes model, found that the Black-Scholes model with 

the implied standard deviation had a performance superior to all 

others tested, as measured by the MAD and MSE. 

Option trading has also been considered an appropriate domain 

for expert system applications.  A constraint logic programming 

model [11] has been developed as an expert system which uses the 

Black-Scholes model to evaluate strategies and compute option values. 

 Constraint satisfaction has been used for other approaches to option 

price modelling [12];  however, no strong measures of the 
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effectiveness of these models have been reported. 

Empirical tests show that Black-Scholes remains superior among 

option pricing equilibrium models, with the possible exception of 

cases in which trades are made deep-in and deep-out-of-the-money. 

 The volume of research which continues to proliferate related to 

the Black-Scholes model, even 20 years after its introduction, 

indicates there is considerable interest and value in developing 

a model which is more robust than Black-Scholes.  In addition, there 

is some reason to believe that the trading process itself may reveal 

underlying strategies as well as analytical models and there is 

information to be gained from historical pricing data.  Neural 

networks have been shown to be useful in modelling nonstationary 

processes and nonlinear dependencies and thus, may represent a 

channel of investigation in the search for another type of option 

pricing model. 

 

3.  Methodology 

3.1.  The data set 

The data set used for this research was developed using option 

price transactions data published in the Wall Street Journal during 

the period from January 1, 1990 to June 30, 1990.   The data set 

selected for testing includes pricing data from April 23 to June 

29, 1990 and includes in-the-money options and out-of-the-money 

options with time to expiration between 30 and 60 days.  Typically, 
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6 different call prices per day are quoted. 

      The five variables selected to estimate the market price of 

the option (MARKET PRICE) are those used in the Black-Scholes model; 

exercise price (EXER), time to expiration (DAYS), closing price 

(CLOSE PRICE), volatility (VOL), and interest rate (INT).  The 

Black-Scholes variables were used because we wanted to compare the 

relative performances of the two models.  A sample data set used 

to calculate the Black-Scholes model prices is included in Table 

1.  For the neural network, we added two lagged variables:  

yesterday's closing price, LAG CLOSE PRICE, and yesterday's market 

price of the option, LAG MARKET PRICE.   

Preliminary data analysis revealed dependencies and 

relationships between the variables which were used to partition 

the data sets for the neural network.  Figure 1 shows a graph of 

exercise prices versus market prices.  From deep-in-the-money to 

at-the-money, there is a sharp and steady decrease of prices.  From 

at-the-money through out-of-the-money, the prices have a gentle 

asymptotic approach to the x-axis.  Experimentation with different 

training sets showed that better results could be obtained in the 

neural networks when the data was separated into in-the-money and 

out-of-the-money groups.  Prices in-the-money vary from $60.00 to 

$0.75;  prices out-of-the-money vary from $15.50 to $0.0625.  A 

larger proportion of observations exist for out-of-the-money prices 

than for in-the-money prices.  Correlations were also found between 
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time to expiration and market price of the option, and between the 

closing price and the market price of the option.   

 

3.2. The Estimation Process  

Under supervised learning, the feedforward, backpropagation 

neural network learns relationships between input and output 

variables during a training process, as data are presented to the 

network.  One approach to testing the performance of the network 

is to check its accuracy in estimating values for a holdout sample 

generated from the training set.  For evaluating the performance 

of the option price neural network, we selected a more realistic 

and more difficult performance measure.  The network was trained 

using historical data and option price estimations for a future period 

were developed with the trained network and compared to actual prices. 

    

To capture the volatile nature of the options market, a 

relatively short time frame was used for the training sets and testing 

sets.  The testing sets were developed using a two-week time frame; 

 this was a convenient choice because interest rate and volatility 

changed weekly and were relatively stable over a two-week period. 

 Five two-week periods were selected for price estimation;  the weeks 

beginning April 23, May 7, May 21, June 4, and June 18.  To provide 

the neural network models with a variety of examples, each training 

set included as many observations as necessary to provide at least 
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one full cycle (30 days prior to the estimation period) of pricing 

data.          

4.  The Neural Network Model for Option Pricing  

4.1.  Neural Networks and Backpropagation 

Inspired by studies of the brain and the nervous system, neural 

networks are composed of neurons or processing elements and 

connections, organized in layers.  These layers can be structured 

hierarchically, and the first layer is called the input layer, the 

last layer is the output layer, and the interior layers are called 

the middle or hidden layers.  Feedforward networks map inputs into 

outputs with signals flowing in one direction only, from the input 

layer to the output layer. Each connection between neurons has a 

numerical weight associated with it which models the influence of 

an input cell on an output cell.  Positive weights indicate 

reinforcement;  negative weights are associated with inhibition.  

With supervised learning, connection weights are learned by the 

network through a training process, as examples from a training set 

are presented repeatedly to the network. 

Each processing element has an activation level, specified by 

continuous or discrete values.  If the neuron is in the input layer, 

its activation level is determined in response to input signals it 

receives from the environment.  For cells in the middle or output 

layers, the activation level is computed as a function of the 

activation levels on the cells connected to it and the associated 
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connection weights.  This function is called the transfer function 

or activation function and may be a linear discriminant function, 

i.e., a positive signal is output if the value of this function exceeds 

a threshold level, and 0 otherwise.  It may also be a continuous, 

nondecreasing function.  The most commonly used for backpropagation 

is the sigmoidal or logistic function  

 

 

where γ is a constant which controls the slope.   

  While basically an information processing technology, neural 

networks differ from traditional modelling techniques in a 

fundamental way.  Parametric models require that the developer 

specify the nature of the functional relationship between the 

dependent variable and the independent variables e.g., linear, 

logistic.  Neural networks with at least one middle layer use the 

data to develop an internal representation of the relationship 

between the variables so that a priori assumptions about underlying 

parameter distributions are not required.  As a consequence, we might 

expect better results with neural networks when the relationship 

between the variables does not fit the assumed model.  Nevertheless, 

many decisions regarding model parameters and network topology can 

affect the performance of the network.  

f(x)=
1

1+e-γx
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Two-layer neural networks do not have the ability to develop 

internal representations.  They map input patterns into similar 

output patterns.  While these networks have proved useful in a 

variety of applications, they cannot generalize or perform well on 

patterns which have never been presented.  A two-layer feedforward 

backpropagation neural network can be developed which is similar 

in structure to the familiar linear regression model [13]. 

In a feedforward neural network, the connection weights can 

be determined during a two-step training process that presents 

examples {(xp,yp): p = 1,...,P} where xp is the input vector and yp 

is the output vector.  In the first step, for each layer of nodes, 

the network computes the output vector op as a function of the input 

vector and the associated connection weights.  The values for the 

output layer nodes are compared to the actual output vector and a 

performance criteria, like the sum of the squared error, is used 

to determine the error for the output layer.  In the second step, 

the error is backpropagated through the network and the weights wij 

are modified, according to their contribution to the network error 

F.  For further details, see [14]. 

 

4.2.  Assumptions for the Neural Network 

Since the purpose of our study is to compare the call option 

price estimations made by Black-Scholes with prices estimated by 

a neural network model, many of the fundamental assumptions made 
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by Black and Scholes in their option pricing model are included as 

required assumptions for the network as well.  Assumptions (a), (c) 

- (g) will hold true for the neural network, while (b), which requires 

that the distribution of the prices be lognormal, may be relaxed. 

The input nodes of the neural network represent the same 5 input 

variables used to generate the Black-Scholes price estimations.  

The variable volatility (VOL) for the neural network is measured 

in the same way as it is for the Black-Scholes model.   

 

4.3.  The Development of the Neural Network for Option Pricing 

Since feedforward, single hidden layer neural networks have 

been successfully used for classification and prediction, we selected 

this network model for our initial experiments and used the 

backpropagation training algorithm.  A neural network consisting 

of 7 input nodes, 4 middle layer nodes, and 1 output node was developed 

(see Figure 2).  The input nodes represent the five financial 

variables used in the Black-Scholes model (EXER, DAYS, CLOSE PRICE, 

VOL, and INT) and two lag variables (LAG CLOSE PRICE and LAG MARKET 

PRICE), and the output node (MARKET PRICE) represents the market 

price of the option.  Determining the proper number of nodes for 

the middle layer is more of an art than a science and experimentation 

and heuristics assisted in making this choice.  Generally speaking, 

too many nodes in the middle layer, and hence, too many connections, 

produce a neural network which memorizes the input data and lacks 
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the ability to generalize.  Therefore, increasing the number of nodes 

in the middle layer will improve performance on the training set 

while decreasing the number of nodes in the middle layer will improve 

performance on a new data set.  This proved to be true for our 

application and 4 middle layer nodes gave the best results. 

The network is fully connected, with a direct connection from 

exercise price (EXER) to the output node (MARKET PRICE).  Better 

results were achieved with this additional connection because of 

the linear dependence between EXER and MARKET PRICE observed in the 

data set and verified with a series of regression models.  All the 

connection weights were initially randomized, and were then 

determined during the training process. 

    The generalized Delta rule was used with the backpropagation 

of error to transfer values from internal nodes.  (For a more detailed 

explanation of backpropagation learning and the generalized Delta 

rule, see [14].)  The sigmoidal function is the activation function 

specified in this neural network and is used to adjust weights 

associated with each input node.       

Supervised learning was conducted with training sets consisting 

of the seven predictor variables and the corresponding market price 

of the option for each exercise price, for each trading day.  For 

the input nodes in which the data was not in ratio form, the values 

were scaled to be within a range of 0 to 1.  This minimizes the effect 

of magnitude among the inputs and increases the effectiveness of 
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the learning algorithm.  The selection of the examples for the 

training set focused on quality and the degree to which the data 

set represented the population.  The size of the training set is 

important since a larger training set may take longer to process 

computationally, but it may accelerate the rate of learning and reduce 

the number of iterations required for convergence.   

The learning rate and momentum were set initially at 0.9 and 

0.6, respectively and the learning rate was adjusted downward and 

the momentum was adjusted upward to improve performance.  The 

training examples were presented to the network in random order to 

maximize performance and to minimize the introduction of bias.  

Training was halted after a minimum of 40,000 iterations.  The 

network was implemented using the software package Neuralworks 

Professional II Plus® running on a 386-based microcomputer with a 

math co-processor. 

 

4.4.  Experimental Design 

To compare the estimations made by each model, we compute and 

report the mean absolute deviation (MAD), mean absolute percent error 

(MAPE), and mean squared error (MSE) for each of the 5 two-week periods 

for both in-the-money and out-of-the-money prices.  While MAD and 

MSE are meaningful measures of error for this application, we were 

most concerned with MAPE.  Since prices vary from $60.00 to $0.0625, 

it is important to compare the amount of the error with the 
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corresponding base price, i.e., to measure the relative pricing 

error.  Option prices were estimated from the Black-Scholes model 

using a computer program based on equations (1)-(3).  Neural network 

estimations were developed by inputting the estimation sets into 

a trained network.  

 

 5.  Results 

The initial results showed that, compared to the actual prices, 

the neural network estimations had a lower MAPE than Black-Scholes 

for 4 of the 5 two-week periods for the out-of-the-money case, but 

Black-Scholes was superior for 4 of 5 two-week periods for 

in-the-money trades.  These results are reported in Tables 2 and 

3.  A bias commonly reported in the literature is that Black-Scholes 

tends to underprice in-the-money calls [9].  To examine pricing bias, 

we plot the percent pricing error versus the percent the option is 

in-the-money or out-of-the-money.  Pricing error is calculated as 

the difference in the model price and actual market price, divided 

by the model price.  Pricing error is negative when the model 

underestimates the actual market price and is positive when the model 

overestimates the market price.  The percent in-the-money or 

out-of-the-money is found by calculating the difference in the 

exercise price and the closing price and then dividing by the exercise 

price.   

Pricing bias was investigated for both the Black-Scholes and 
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the neural network models.  Figures 3 and 4 show percent error (values 

greater than 0 indicate overpricing and less than 0 indicate 

underpricing) relative to percent in or out-of-the-money (negative 

values indicate out-of-the-money, positive are in-the-money).  In 

the Black-Scholes model (see Figure 3), underpricing is more 

prevalent than overpricing for in-the-money and overpricing is 

predominant for out-of-the-money.  The neural network model (see 

Figure 4) underprices options more than it overprices them, for both 

in and out-of-the-money.  For both models, the most serious errors 

occur out-of-the-money; however, the overpricing errors are more 

significant for the Black-Scholes model as prices move deep 

out-of-the-money. 

Paired sample comparisons tests were run on the Black-Scholes 

estimates and actual market prices and on the neural network estimates 

and actual market prices.  In Table 4, we report the results for 

out-of-the-money prices.  The means, variances and standard 

deviations for each sample and for the differences between the model 

price and the actual price are reported.  The null hypothesis of 

no difference in the means is rejected at the 5% significance level 

for each model.  The 95% confidence intervals for the mean 

differences show that the Black-Scholes consistently overprices the 

options, while the neural network underprices them.  We also observe 

that the standard deviation of the differences is smaller in the 

neural network prices.  
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Results of the paired sample comparisons test for the 

in-the-money cases are shown in Table 5.  There is a statistically 

significant difference between the means of the sample of neural 

network predictions and the sample of actual market prices.  This 

is not surprising since the bias tests indicated the tendency of 

the neural network to consistently underestimate prices.  The 

Black-Scholes however, did not show a significant difference from 

zero, hence it provides a better model for in-the-money, for this 

data set. 

Scatterplots were developed showing the market prices versus 

the Black-Scholes prices (see Figures 5 and 7) and the market prices 

versus neural network predictions (see Figures 6 and 8).  From 

Figures 5 and 6, which show out-of-the-money prices, we observe more 

outliers in the Black-Scholes estimates than in the neural network 

estimates.  This is consistent with the higher standard deviation 

found in the paired comparisons test.  For the neural network 

estimates, prices furthest from at-the-money are more clustered than 

for the Black-Scholes.  While a strong linear relationship is 

indicated in each, more variation is observed in the Black-Scholes 

as the market prices become larger, i.e., as prices move further 

from at-the-money.  Figures 7 and 8, which show in-the-money prices, 

show more consistent spread for the neural network prices while the 

Black-Scholes prices are more clustered near at-the-money, which 

is the expected result.   
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A few observations about the results can be made.  First, 

although we have only presented summary statistics, one can observe 

similarities between the individual price estimates made by the two 

models.  Each model has difficulty computing prices when the trades 

are deep in-the-money.  This is expected for the neural network 

because the majority of trades are close to at-the-money and thus, 

there are insufficient examples to present to the network for these 

cases.  Secondly, we would not expect to achieve results with the 

neural network which are significantly different than those of 

Black-Scholes if many traders are using the Black-Scholes model and 

the market prices reflect their strategies.  The neural network is 

only capable of learning the relationships which are imbedded in 

the observations.  The neural network exhibited a bias of 

underpricing the options and in fact, may be best utilized as input 

into another pricing mechanism.  For the 10 weeks beginning April 

23, the neural network outputs were highly correlated with the actual 

prices and a simple regression equation with the neural network 

outputs as the price predictor variable was observed to perform well. 

 (This approach has been successfully used in other applications, 

e.g. [2]). 

 

 

6.1  Summary and Conclusions 

This empirical examination of the Black-Scholes option 
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valuation model and the neural network option pricing model leads 

to some interesting conclusions.   While both models perform best 

when estimating prices close to at-the-money, the Black-Scholes makes 

greater overpricing errors deep-out-of-the-money, showing many more 

outliers.  A common result emerges for in-the-money cases, with both 

models consistently underpricing options.   However, for both in- 

and out-of the money prices, the neural network outperforms the 

Black-Scholes model in about 50 percent of the cases examined.   

Our results demonstrate that the neural network methodology 

offers a valuable alternative to estimating option prices to the 

traditional Black-Scholes model.  The evidence reported here is 

encouraging, particularly in view of the essentially undisputed 

superiority of the Black-Scholes model.  Analytically, it is 

interesting that the well-developed methodology of Black-Scholes, 

with its explicit formula for pricing options, derived using 

sophisticated financial arbitrage arguments and advanced stochastic 

calculus techniques, can actually be approximated by neural networks. 

  

 There are several limitations which may restrict the use of 

neural network models for estimation.  There is no formal theory 

for determining optimal network topology and therefore, decisions 

like the appropriate number of layers and middle layer nodes must 

be determined using experimentation.  The development and 

interpretation of neural network models requires more expertise from 
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the user than traditional analytical models.  Training a neural 

network can be computationally intensive and the results are 

sensitive to the selection of learning parameters, activation 

function, topology of the network, and the composition of the data 

set.   
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Table 1.  Sample data set 

  

 DATE                CLOSE      INT               MARKET  

 M D  Y   EXER DAYS  PRICE      RATE VOL          PRICE  

 

 4 23 90  280   26   315.58     7.71 0.161633     39.5  

 4 23 90  290   26   315.58     7.71 0.161633       28  

 4 23 90  295   26   315.58     7.71 0.161633     22.5  

 4 23 90  300   26   315.58     7.71 0.161633   17.875  

 4 23 90  305   26   315.58     7.71 0.161633     14.5  

 4 23 90  310   26   315.58     7.71 0.161633       10  

 4 23 90  315   26   315.58     7.71 0.161633    6.625  

 

 4 24 90  280   25   313.96     7.77 0.166284       38  

 4 24 90  290   25   313.96     7.77 0.166284    27.25  

 4 24 90  295   25   313.96     7.77 0.166284     22.5  

 4 24 90  300   25   313.96     7.77 0.166284       17  

 4 24 90  305   25   313.96     7.77 0.166284    12.75  

 4 24 90  310   25   313.96     7.77 0.166284    8.875  

 

 4 25 90  280   24   315.06     7.77 0.159941       36  

 4 25 90  300   24   315.06     7.77 0.159941       17  

 4 25 90  305   24   315.06     7.77 0.159941     13.5  

 4 25 90  310   24   315.06     7.77 0.159941    9.125  

 4 25 90  315   24   315.06     7.77 0.159941        6  

 

 4 26 90  280   23   315.82     7.77 0.158642       37  

 4 26 90  290   23   315.82     7.77 0.158642   25.375  

 4 26 90  295   23   315.82     7.77 0.158642     21.5  

 4 26 90  300   23   315.82     7.77 0.158642   17.625  

 4 26 90  305   23   315.82     7.77 0.158642     13.5  

 4 26 90  310   23   315.82     7.77 0.158642      9.5  

 4 26 90  315   23   315.82     7.77 0.158642     6.25  

 

 4 27 90  280   22   312.48     7.77 0.136054   32.375  

 4 27 90  290   22   312.48     7.77 0.136054       23  

 4 27 90  295   22   312.48     7.77 0.136054     18.5  

 4 27 90  300   22   312.48     7.77 0.136054    14.25  

 4 27 90  305   22   312.48     7.77 0.136054       10  

 4 27 90  310   22   312.48     7.77 0.136054    6.375  
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Table 2.  Comparative analysis, actual prices with estimated  

   prices, out-of-the-money 

 

 

  ┌──────────────────┬───────────────────────────────────────┐ 

  │Week beginning    │   MAD  MAPE   MSE        │   

  ├──────────────────┼───────────────────────────────────────┤ 

  │  April 23        │                                       │ 

  ├──────────────────┼───────────────────────────────────────┤ 

  │ Black-Scholes   │ 0.598932   30.81731      0.435342     │ 

  │ Neural Network  │ 0.207702   12.74440      0.074409     │    

   │                  │                                       │ 

  ├──────────────────┼───────────────────────────────────────┤  

  │  May 7           │                                       │ 

  ├──────────────────┤                                       │ 

  │ Black-Scholes   │ 0.340729   16.23661      0.160047     │ 

  │ Neural Network  │ 0.382937   15.04892      0.253373     │    

   │                  │                                       │ 

  ├──────────────────┼───────────────────────────────────────┤ 

  │ May 21          │                                       │ 

  ├──────────────────┤                                       │ 

  │ Black-Scholes   │ 0.378636    9.43207      0.204219  │  

  │ Neural Network  │ 0.422369   12.30240      0.253676     │    

   │                  │                                       │ 

  ├──────────────────┼───────────────────────────────────────┤  

  │  June 4          │                                       │ 

  ├──────────────────┤                                       │ 

  │ Black-Scholes   │ 0.286645    9.104615     0.245477     │ 

  │ Neural Network  │ 0.312945    9.097162     0.231779     │    

   │                  │                                       │ 

  ├──────────────────┼───────────────────────────────────────┤ 

  │ June 18         │                                       │ 

  ├──────────────────┤                                       │ 

  │ Black-Scholes   │ 0.660788   17.45452      1.250466  │ 

  │ Neural Network  │ 0.447812   10.94668      0.455352     │    

   │                  │                                       │ 

  └──────────────────┴───────────────────────────────────────┘ 
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Table 3.  Comparative analysis, actual prices with estimated  

   prices, in-the-money  

 

 

   

  ┌──────────────────┬───────────────────────────────────────┐ 

  │Week beginning    │   MAD  MAPE   MSE        │   

  ├──────────────────┼───────────────────────────────────────┤ 

  │  April 23        │                                       │ 

  ├──────────────────┼───────────────────────────────────────┤ 

  │ Black-Scholes   │ 0.676936   3.8057        1.055732     │ 

  │ Neural Network  │ 0.82434    5.1689        1.175115     │    

   │                  │                                       │ 

  ├──────────────────┼───────────────────────────────────────┤  

  │  May 7           │                                       │ 

  ├──────────────────┤                                       │ 

  │ Black-Scholes   │ 0.670291    2.7142       1.459734     │ 

  │ Neural Network  │ 1.289340    7.4727       3.127410     │    

   │                  │                                       │ 

  ├──────────────────┼───────────────────────────────────────┤ 

  │ May 21          │                                       │ 

  ├──────────────────┤                                       │ 

  │ Black-Scholes   │ 0.766019    2.8867       1.386018  │  

  │ Neural Network  │ 0.832762    4.6876       1.006885     │    

   │                  │                                       │ 

  ├──────────────────┼───────────────────────────────────────┤  

  │  June 4          │                                       │ 

  ├──────────────────┤                                       │ 

  │ Black-Scholes   │ 0.784969    2.8864       1.771367     │ 

  │ Neural Network  │ 1.053282    5.2136       2.397112     │    

   │                  │                                       │ 

  ├──────────────────┼───────────────────────────────────────┤ 

  │ June 18         │                                       │ 

  ├──────────────────┤                                       │ 

  │ Black-Scholes   │ 1.391258    7.2002       3.945318  │  

  │ Neural Network  │ 0.987918    6.6399       1.407175     │    

   │                  │                                       │ 

  └──────────────────┴───────────────────────────────────────┘ 
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Table 4. Out-of-the-money, paired samples comparison   

 

Paired Samples Comparison with Black-Scholes 

                                                                           

  

                      Black-Scholes       Market Price        Differences  

 Mean                     3.96412            3.45731              0.506807 

 Variance                 5.88913            5.57354              0.72131  

 Std. deviation           2.42675            2.36084              0.8493   

 

95% confidence intervals for differences: 

    Mean:   (0.394979,0.618635) 

    Variance:   (0.604129,0.876435) 

    Std. deviation: (0.777257,0.936181) 

Sample size         N = 224 

                                                                            

                                                                           

 

 Paired Samples Comparison with Neural Networks 

                                                                           

  

                      Network             Market Price        Differences  

  

Mean                  3.33894             3.45731             -0.118374   

Variance              4.84811             5.57354              0.23783 

Std. deviation        2.20184             2.36084              0.487678 

 

95% confidence intervals for differences: 

    Mean:   (-0.182587,-0.0541612) 

    Variance:   (0.199193,0.288978) 

    Std. deviation: (0.44631,0.537566) 

Sample size         N = 224   
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Table 5. In-the-money, paired samples comparison  

 

 

 

 Paired Samples Comparison with Black-Scholes 

                                                                           

  

                      Black-Scholes       Market Price        Differences  

 Mean                     21.4778            21.58             -0.102209 

Variance                104.888            101.118             1.41015 

Std. deviation           10.2415            10.0557            1.1875 

 

95% confidence intervals for differences: 

    Mean:   (-0.253529,0.0491108) 

    Variance:   (1.18749,1.70225) 

    Std. deviation: (1.08972,1.3047) 

Sample size         N = 239 

                                                                            

 

 

 

 Paired Samples Comparison with Neural Networks 

                                                                           

  

                      Network             Market Price        Differences  

 Mean                 21.0799                21.5785           -0.498506 

Variance             95.9599               100.656             1.78591 

Std. deviation        9.79591               10.0328            1.33638 

 

95% confidence intervals for differences: 

    Mean:   (-0.668798,-0.328215) 

    Variance:   (1.50392,2.15585) 

    Std. deviation: (1.22634,1.46828) 

Sample size         N = 239  

                                                                            

 

  


