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This paper investigates the theoretical foundations of Fisher's equation which expresses the nominal interest rate as the sum
of the real interest rate and the expected rate of inflation. To emphasize Fisher's (1930} original formulation and Sargent’s
(1573) recent suggestion that nominal interest rates and inflation are simultaneously determined rather than having the
causation go from inflation o interest rates, we develop a two-equation continuous {ime stochastic model to build a more
solid theoretical foundation of Fisher's equation. Assuming that the nominal interest rate and the rate of inflation follow Ii8
processes we derive an Ttd equation that allows us to express and compute the expected real interest rate and its volatility.
These two equations generalize the traditional Fisher equation and an illustration using US long data from 1865-1972 shows
the usefulness of our results,

1. Introduction

Keynes (1930, pp. 198-210) observed that A.IL. Gibson, a businessman, had written several
articles during the 1920’s about the fact that interest rates exhibited a high correlation with
inflation. Keynes called this empirical relationship between interest rates and inflation the ‘Gibson
paradox’ because it appeared contradictory to the classical monetary theory prediction that the
interest rate is independent of the price level, Fisher (1930) proposed his, by now famous,
hypothesis to explain the Gibson paradox. Fisher suggested that the nominal interest rate, R, is the
sum of the real rate of return on assets, r, with such return fixed in real terms and the expected
rate of inflation denoted as E(dP/d¢X1/P), that is,

R dr 1 ’
rJr'E( dt P)’ )

* Earlier versions of this paper were presented at the Winter Meetings of the Econometric Society and at seminars at
Northwestern University and the University of Oklahoma, We are thankful to numerous colleagues and seminar
participants for useful comments. Any remaining errors are our responsibility.
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where P denotes some index of the economy’s price level, such as the consumer price index, or the
GNP implicit price deflator. Tanzi (1980) reviews the earlier literature and Tobin (1987) overviews
Fisher’s ideas on this topic, and clarifies three, often overlooked, important issues about (1),

First, in its simplest form, Fisher’s equation connects the nominal interest rate to the real
interest rate and the actual inflation i.e. R=r+(dP/dt) (1/P) and as such it is first of all an
identity relating the unobservable value of real interest rate r to two observable variables, the
nominal interest rate and the rate of actual price inflation.

Second, Fisher viewed (1) as an equilibrium condition in the financial markets and for this
purpose he replaced the actual inflation (dP/dfX1/P) by the expected inflation E{(dP/d¢)
{1/P)). In such a formulation, (1) relates one observable variable, i.c. the nominal interest rate R,
to two unobservable ones, which makes (1) impossible to test empirically.

Third, Fisher recognized that in the longer run, steady-state equilibrium would also be character-
ized by equality of actual and expected inflation, (dP/dt} (1/P) =E(dP/d¢) (1/P)). Assuming
such an equilibrium condition allows one to use data for the two observables, nominal interest rates
and inflation, to compute the real rate of interest.

Sargent (1973) in his comprehensive article on this topic concludes that Fisher’s explanation of
the paradox is inadequate it posits an unidirectional influence flowing from inflation to interest
rates. He suggests that an adequate theory claiming to explain the Gibson paradox must account
for the fact that in a rational expectations environment interest rates and inflation are being
mutually determined.

Tobin (1987) claims that it was not actually Fisher but some of his followers who frequently cited
(1) in support of a complete and prompt transmission of inflation into nominal interest rates. Such
view usually assumes the constancy of the real intcrest rate and empirically tests for market
efficiency articulated by Fama (1975, p. 269): ‘If the inflation rate is to some extent predictable, and
if the one-period equilibrium expected real return does not change in such a way as to exactly offset
changes in the expected rate of inflation, then in an efficient market there will be a relationship
between the one-period nominal interest rate observed at a point in time and the one-period rate
of inflation subsequently observed’.

Tobin (1987, p. 375) writes that ‘Fisher’s view throughout his career was quife different. For one
thing, neither Fisher’s theory of interest nor his reading of historical experience suggested to him
that equilibrium real rates of interest should be constant. Fisher’s original views as well as Sargent’s
(1973) suggestions. In section 3 we use long term data from Friedman and Schwartz (1982) to
illustrate the theoretical results. A brief summary and the main conclusions are summarized in the
last section.

2. A continuous time stochastic approach ‘

To follow up on Tobin’s claims about Fisher’s actual view of (1) and also Sargent’s obvious
suggestion of the mutual interdependence inflation and interest rates and simultaneously to do it in
a way that the market methodology is preserved we propose the following model. Assume that
nominal interest rates and inflation follow It&’s stochastic differential equations given by

dg '

—-Q—=[LR([, R) df+0‘R(t, R) dZR’ (2)
dP

—— =pp(t, P) dt +op(t, P) dZp, : )

P
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with
dZ, dZp=ppp dt. ‘ (4)

Note that (2) describes the nominal return of an asset per unit of time as an Itd process. For
example, (2) may describe the nominal return of a bond valued at $Q at time f. Therefore, pp
denotes the instantaneous nominal interest rate, that is, w, = R, and oy denotes its instantaneous
volatility, In (3), inflation is expressed again as an Itd process with u, denoting the instantaneous
rate of expected inflation, that is, E(dP/df) (1/P)=p,, and o, denoting inflation volatility.
Observe that both nominal interest rates in (2) and inflation in (3) are shocked by random forces
denoted by dZ, and dZ, respectively. These variable denote standardized Wiener processes and
in order to implement Fisher’s views and Sargent’s suggestion of the mutual interdependence of
inflation and interest rates we postulate in (4) that these Wiener processes are correlated, with
prp# 0. The methodological and mathematical foundations of continuous time stochastic mod-
elling are presented in Malliaris and Brock (1982) and Merton (1975, 1982).

Next we define the real value of an asset, denoted by g, as in Fischer (1975)

a=0/P, | )

and ask the question: what is the behavior of g in view of the two processes in (2} and (3)7 Ied’s
lemma and calculations vield the answer to this question, namely,

0\ (€ . -
dQ/Q=d('1;)/(?) = [NR‘#P‘URC’PPRP"‘U};Z] di+ o dZg—~0p dZp. (6)

Equation (6) describes the proportional change in the real rate of interest as an Itd process and
is consistent with Fisher’s view of the nonconstancy of the real rate of interest. Taking the
expectation and variance of (6) we get

ol P 2 | 7
p Hp—Mp— OpOpPRp T Op; . (7)

fi_q — 2 2 C
Var q Ogp ZURGPPRP + Op. (8)

The pair of eqs. in (7) and (8) generalize in a mathematically precise and an economically
important way Fisher’s equation in (1). Mathematically, E(dg/q) measures the real return and
therefore (7) generalizes Fisher’s equation (1). Since:E(dg/q) =1 then (7) can be written as

r=pg = pp— Og0pPrpt+0f, (9)

which reduces to Fisher’s equation if we assume that g = o =0, i.e., if we assume that both the
volatilities of nominal interest rates and inflation are zero. In other words, our modeiling has
enabled us to generalize Fisher’s equation. More specifically, since we have already observed that
tr =R and B(dP/dr) (1/P) = pp, making these two substitutions and rearranging terms, (%) can
be written as

R=r+E ‘—j—}.ii + OROpPRp — OF. (10)
i P rROPPRP — 0P
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This last equation illustrates that Fisher’s eq. (1) is a special case of (10) obtained when
volatilities are ignored. It is worth recalling at this point that Fisher (1930, 1963) and numerous
researchers of this topic realize that a more accurate relation for (1) can be obtained from

dP 1
1+R=(1+r)lI+E(E-}—))], (11)

where (1 + R) denotes the nominal increase of a $1 debt, (1 +r) measures the real productivity
increase and 1 + B(dP/df)(1/P) denotes the increase in value due to expected inflation, From (11)
we conclude that

dP 1

R=r+E(—w~~—)+rE( (12)

de¢ P dt P
which is a more accurate discrete time version of (1), The reason that (1) is stated as Fisher’s
equation instead of (12) is because the term rE(dP/d¢)1/P) is arithmetically insignificantly small.
Our term apoppgp in (10) actually captures the impact of rE(dP/d¢)(1/P) (12). But even if the
more accurate version of Fisher’s equation in (12) is used, still the continuous time modelling yields
a generalization because of the extra term o7 in (9) and, more importantly, because it yields one
whole additional equation (8) describing the variance of the real interest rate. In other words, we
need not assume as fisher's followers claim that the real interest rate is constant and by allowing it
to vary, the square root of equation (8) describes the time path of its volatility. There is no a priori
reason why the variance of the real rate of return should be zero in (8). If (8) is not zero, then the
real rate of interest is not constant and equation (8) describes the volatility of the real rate of
interest as the sum of the volatility of the nominal interest rate and inflation, less two times their

covariance,

dPl)

3. U.S, data 1865-1972

Friediman and Schwartz (1982) have collected and analyzed extensively annual US data for the
period 1865-1972. We use their data for our two variables: short-term nominal interest rates on
commercial paper and inflation. Simple calculations show that the average nominal interest rate
and its volatility (standard deviation) are pp = 0.042183 and gy = 0.020949, while the average rate
of inflation and its volatility are pp=0.013084 and o, = 0.05269. Assuming that expected inflation
was correctly anticipated and therefore that expected inflation was equal to actual inflation,
Fisher’s equation (1) yields an average real interest rate for the US during 1865-1972 given by
daP 1) dP 1

r=R- E(? I3 R- i 0.042183 — 0.013084 = 0.029099. (13)

Next, we wish to show the numerical results obtained from egs. (7) and (8) derived using
stochastic calculus techniques. Observe that we need to compute ppp from (9. To accomplish this,
first use the values of pg = 0.042183, oy = 0.020949, p, = 0.013084, and o, = 0.05269 to write (2)
and (3) as

d
@Q — 0.042183 df -+ 0,020049 d Zp,, (14)

dap
7 0.013084 dr + 0.05269 dZp. (15)
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Next, use the actual time series of nominal inferest rates and (14) to solve for dZg. Similarly,
obtain a time series for errors dZ, from (15), using the actual annual inflation or deflation. For
purposes of diagnostics we checked and confirmed that E(dZ,) =E(dZ,) =0 and Var(dZg) =
Var(dZ,) = 1. From these two time series dZ and d Z, obtained as just described, we can readily
compute their correlation coefficient p,p. It is found to be pgp= —0.19681. The negative sign
indicates that the various shocks that have affected prices positively had an average negative impact
on nomina! interest rates, This finding cannot be supported by the efficient market hypothesis but
is nevertheless an empirical phenomenon of this period during which inflation was highly volatile
while nominal interest rate were much more stable and responded to such inflation volatility with
lags.

With these calculations completed, (9) yields

r=fg=itp = OROpPrp + OF,
= (0.042183) — (0.013084) - (0.020949)(0.05269) ( —0.19681) + (0.05269),
= 0.032092476, (16)
while the variance of the real interest rate is given by
Var r =02 — 2030ppgp + 0F,
= (9.20949)2 — 2(0.020949) (0.05269)( —0.19681) + (0.5269)%,

= 0.003649576. . . (17)

Note that (16) slightly overestimates the real interest rate obtained from the simple, traditional
Fisher equation in (13). The reason is that inflation’s volatility during this period was very high and
therefore the term ¢ is not negligible. Also, although the term ogopogp is very small, the fact that
prp i negative also ends up contributing to the real interest rate. On the basis of one application of
the generalized Fisher equation one could not claim that (13) underestimates the real interest rate.
However, it is illustrative that (16} gives a much more accurate estimation of the real interest rate
since it contains four terms instead of just two for the simple Fisher equation. In other words, the
generalization of Fisher's equation having four terms in (16) instead of only two terms in (13) is not
trivial. It would have been arithmetically (rivial, although still interesting analytically, if the two
extra terms in (16) were numerically always negligible.

Finally, observe that taking the square root of (17) we obtain that the volatility of the real
interest rate during 1865-1972 was 0.060411721. This implies that the real interest rate was not a
constant during this period. Thus equation (17) supplies us with useful information which is not
available from Fisher’s elementary theory.

4. Conclusions

This paper investigates the thcoretical foundations of Fisher’s equation which expresses the
nominal interest rate as the sum of the real interest rate and the expected rate of inflation.
Following Fisher, we assume that an equilibrium condition in financial markets implies that
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expected inflation equals actual inflation and therefore one can study the impact of inflation
(expected and actual) on nominal interest rates).

To emphasize Fisher’s (1930) original formulation and Sargent’s (1973) recent suggestion that
nominal interest rates and inflation and simultaneously determined rather than having the causa-
tion go from inflation fo interest rates, we develop a two-equation continuous time stochastic model
to build a more solid theoretical foundation of Fisher’s equation. Assuming that the nominal
interest rate and the rate of inflation follow Itd processes we derive an It6 equation that allows us
to express and compute the expected real interest rate and its volatility. These two equations
generalize the traditional Fisher equation and an illustration using US long data from 1865-1972
shows the usefulness of our results.

References

Fama, B.F.,, 1975, Short-term interest rates as predictors of inflation, The American Economic Review 63, 269-282.

Fischer, S., 1975, The demand for index bonds, Journal of Political Economy 83, 509-534,

Fisher, I, 1930, The theory of interest (MacMillan and Company, New York).

Fisher, L, 1963, The purchasing power of money {Kelley, Publisher).

Friedman, M. and A.J. Schwartz, 1982, Monetary trends in the United States and the United Kingdom (University of
Chicago Press, Chicago, 1L).

Keynes, J.M., 1930, A treatise on money (MacMillan, London},

Malliaris, A.G. and W.A. Brock, 1982, Stochastic methods in economics and finance (North-Holland, Amsterdam).

Merton, R.C,, 1975, Theory of finance from the perspective of continuous time, Journal of Financial and Quantitative
Analysis 10, 659-674.

Merton, R.C.,, 1982, On the mathematics and economic assumptions of confinuous time models, in: W.F. Sharpe and CM.
Cootner, eds,, Financial economics: Essays in honor of Paul Cootner (Prentice-Hall, Englewood Cliffs, NI} 19-51.

Sargent, T.J., 1973, Interest rates and prices in the long run: A study of the Gibson paradox, Journal of Money, Credit and
Banking 5, 385-449,

Tanzi, V., 1980, Inflationary expectations, economic activity, taxes, and inferest rates, American Economic Review 70,
12-21.

Tobin, 1., 1987, Irving Fisher (1867-1947), in: The new Palgrave: A dictionary of economics, Vol. 2, 369-376.




