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Abstract.  The celebrated Taylor Rule methodology has 
established that the decisions made by the Federal Open 
Market Committee concerning possible changes in short 
term interest rates reflected in Fed Funds are influenced by 
deviations from a desired level of inflation and from 
potential output.  The Taylor Rule determines the future 
interest rate and is one among several methodologies than 
can be used to predict future short term interest rates.  In 
this study we use four competing methodologies that model 
the behavior of short term interest rates.  These 
methodologies are: time series, Taylor, econometric and 
neural network.  Using monthly data from 1958 to the end of 
2005 we distinguish between sample and out-of-sample sets 
to train, evaluate, and compare the models’ effectiveness. 1 
 

I.  INTRODUCTION 
 

The basic purpose of this paper is to evaluate the 
forecasting performance for monthly Federal funds rates 
using several competing methodologies.  A number of 
econometric interest rate forecasting methodologies have 
been investigated in the literature.  For an account of 
some of the methodologies that have been applied, see [1] 
and [2].  Rather than considering every available method, 
we shall restrict ourselves to the following four 
approaches:  1.  a time series model where Fed Funds 
rates are determined solely by past rates, 2. a Taylor 
model where Fed Funds are functions of past influential 
factors, 3. an Econometric model where Fed Funds are 
functions of past rates as well as influential factors, and 4. 
a neural network model using the same input variables as 
the Econometric model.  A chart indicating the monthly 
path of the Fed funds rates from 1957 through 2005 is 
shown in Figure 1.   
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Federal funds rates from 1957 through 2005 

 

                                                 
1 Both authors are at Loyola University Chicago, in the 
departments of Economics and Information Systems, 
respectively. 

II.  TIME SERIES MODEL:  FED FUNDS ARE 
DETERMINED SOLELY BY PAST RATES 

 
Much research has been conducted using a continuous-
time short-term rate model specification such as  
 
 dr = (α + βr)dt + σrγdz                                                     (1) 
where:  r = short-term interest rate 
            α, β, γ = model coefficients to be determined  
            σ = standard deviation of the short-term rates 
            z = Brownian motion 
This formulation assumes that movements in interest rate 
are strictly a function of interest rate levels and volatility.   
For investigations of such formulations, see [3].  From (1) 
a discrete time series model can be obtained: 
  rt = α + βrt - 1 + εt                                (2) 
where:  rt  = short-term interest rate at time t 
            rt - 1 = short-term interest rate at time t  - 1 
            εt  = model error term at time 
            E(εt) = 0 
            α, β = model coefficients to be determined 
Depending on the date range evaluated, the value of β is 
normally found to be very significant and close to 1.  This 
indicates that interest rates have high serial correlation.  
Such a result is to be expected since, on average, interest 
rates are only changed at most monthly by the Fed.  In the 
sections that follow, the model described in (2) will be 
used as a base model on which to evaluate the 
effectiveness of other models.  Figure 2 show the 
relationship between fed funds at time t-1 and  time t, 
sorted by funds at t-1.  Notice the close to linear 
relationship for all but the highest values on the graph. 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Fed funds at time  t-1 vs. at time t 

 
III.  THE TAYLOR MODEL:  INTEREST RATES ARE 

FUNCTIONS OF PAST INFLUENTIAL FACTORS 
 

The most famous Fed Funds model is the one proposal by 
Taylor [4, 5, 6].  It argues that Fed Funds are determined 
by the Fed’s objectives to promote price stability and 

Fed Funds t-1 vs. Fed Funds t
sorted by Fed Funds t-1
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economic growth.  There is both a quarterly and monthly 
version.  We concentrate on the monthly version where: 
      rt =  2  +  pt - 1 + 1/2 (pt - 1 – 2) + 1/2(ut – 1 – 4)     (3) 
 where:  rt = fed funds rate at t 
              pt - 1 = lagged monthly inflation measured by CPI 
             ut – 1 = lagged monthly unemployment rate 
By rearranging terms, this equation can also be written as: 

rt =  1  + 1.5pt - 1 + .5(ut – 1 – 4)                       (3’) 
     There are multiple ways to get a measure of inflation.  
For a more elaborate scheme using daily data, see [7].  
We compute the monthly rate of inflation and call it 
Inflation computed from the CPI using the following 
formula:  CPIt+1 = (CPIt+1 - CPIt)/ CPIt .  Note that this 
second formulation of the equation indicates that the 
Federal funds rate should be changed 1.5 percent for each 
1 percent change in inflation.  It is felt that such a forceful 
reaction to inflation tends to drive future inflation to a 
lower value.  Judd and Rudebusch [8] show that when 
interest rates are not adjusted strongly in reaction to past 
inflation, the result can be rampant future inflation similar 
to the inflation exhibited during the era of 1970 – 1978.  
     The Taylor rule has become the basis for comparison 
and development of other policy reaction functions.  
Modifications to the Taylor rule include the addition of 
other variables as exemplified by [9].   Other 
considerations include the addition of expectations of 
future values of inflation and output, as shown in [10].   
We used the Taylor rule in two formulations.  In the first, 
values for the coefficients were taken as standard 
formulations as exhibited by equation 3’.  In the second, 
we solved for the coefficients on the specific subsets of 
the data in order to see what the data-driven coefficients 
would be on each of these various data subsets.  In the 
results, these two formulations of the Taylor equation are 
referred to as Taylor and Taylor2.    Figures 3 and 4 show 
the paths of the Unemployment Rate and CPI Change. 
 

Monthly Unemployment Rate 1957-2005
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Fig. 3.  Unemployment Rate 

 
IV.  THE ECONOMETRIC MODEL:  INTEREST 
RATES ARE FUNCTIONS OF PAST RATES AS 

WELL AS INFLUENTIAL FACTORS 
 

The third approach combines the factors of the Taylor 
rule with previous interest rates, that is, with the time 
series model.  By combining equations (2) and (3), we 
obtain the following using slightly different coefficient 
symbols: 
       rt = α + ρrt  – 1 + β(pt  – 1 – 2) + λ(ut – 1 – 4) + εt            (4)  

 

CPI-All Items 12 month 
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Fig. 4.  CPI Monthly Change Rate 

 
where: rt = short-term interest rate at time t 
           pt – 1 = inflation rate at time t – 1 
           ut – 1 – 4 = excess unemployment 
           εt = model error term at time t where E(εt) = 0   
           α, β, λ, ρ = model coefficients to be determined  
Numerous investigators have evaluated equations of this 
form using past values of inflation and excess 
unemployment for various time intervals and various 
countries including [8] and [9]. 
 
V.  INTEREST RATES DETERMINED BY A NEURAL 

NETWORK USING PAST RATES AND 
INFLUENTIAL FACTORS 

 
Neural networks have shown much promise in various 
financial applications, especially with complex problems 
[11, 12, 13, 14].  A neural network is a non-linear 
estimator using weighted interconnected nodes to 
generate a forecast.  It is very dependent upon the training 
data set since it adjusts its weights to optimize 
performance on this training data, but has the ability to 
often outperform linear models on complex data sets.  The 
network contains three layers.  The input layer has one 
node corresponding to each input variable.  The output 
layer has one node corresponding to each desired output.  
In between these, the hidden layer is a set of nodes with 
no direct variable interpretation, but which serves to help 
mold the form of the inputs to the output. Each input and 
hidden layer node is multiplied by a weight that adjusts 
the importance of the node.  A sigmoid function is applied 
to the weighted sum of each hidden layer and output layer 
node.  In the hidden layer, this function of the weighted 
sum becomes the signal that is sent to the output node.  In 
the output node, the function of the weighted sum is the 
forecast of the Fed funds rate.  In this test, we will use the 
Fed Funds, CPI and Unemployment Rate as inputs to 
forecast the Fed Funds rate at the next time period.  
Figure 5 shows a general neural network architecture. 
 



Neural Network Architecture
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Fig. 5.  Neural Network Architecture 
 

VI.  OUR DATA 
 

We use monthly data for fed funds, inflation measured by 
the CPI and unemployment from January 1957 to 
December 2005.  CPI data is annualized by calculating 
ln(xt/xt-12)*100 for each month.  Percentages are adjusted 
to whole numbers, for example, 4% is used as 4, not .04.  
The variable “Gap” was calculated as the Unemployment 
Rate minus 4.  That is, it measures how far the 
Unemployment Rate varies from this critical value. 

The computations for each model are performed 
for various subsamples of the set.   These subsamples are 
divided first into two distinct time periods, then into three 
sets by value of the current Fed Funds rate.  These five 
sets include:  time prior to Greenspan (1957 through July 
1987), since Greenspan (August 1987 through November 
2005), the months where the adjusted Fed Funds rate was 
less than 5, between 5 and 10, and greater than 10.   For 
each subsample, a random set of 10% of the rows was 
held out from training and used as the validation set.  The 
models are all compared by looking at their performance 
on these five validation sets.  Sizes of each of the model 
training and validation sets are shown in Table 1.  The 
validation sets contain a wide range of data values and 
can be seen in figures 6 and 7. 
       As explained in prior sections, not all variables are 
used in all models.  The Random Walk model uses only 
the current Fed Funds number as an independent variable.  
The Taylor model uses CPI and Unemployment Rate.  
The Econometric and Neural Network models use current 
Fed Funds, CPI, and Unemployment Rate.  The 
dependent variable for all models is Fed Funds for the 
next month. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.  Validation Sets for PreGreenspan and Greenspan Data Sets 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  Validation Sets for Low, Medium, and High Data Sets 
 
Data Set Training Validation Total
PreGreenspan 319 36 355 
Greenspan 197 22 219 
rt-1 : 0 to 5 219 24 243 
rt-1 : 5.01 to 10 243 27 270 
rt-1 : over 10 55 6 61 
Table 1.  Data Set Sizes 
 

VII.  MODEL RESULTS 
 

On the Random Walk model, Table 2 shows the model-
generated values for the intercept and coefficient on each 
data set.  On all but one set, the coefficient was almost 1, 
as expected.  On the High set, it dropped to .879 and the 
intercept increased greatly. 
 

  Pre-Gr. Gr. High Med. Low 

Intercept 0.177 0.006 1.48 0.021 0.02 
Coeff. of 
rt-1 0.973 0.995 0.88 0.995 1 

Table 2.  Random Walk equation values across data sets 
 
Table 3 shows the data-derived coefficients for the 
Taylor2 equations.  Only in the Greenspan data set does 
the CPI coefficient approach the 1.5 of the standard 
Taylor equation.  The Gap coefficient is not close to ½ in 
any data set and the intercept, rather than being equal to 1, 
ranges from 1.8 to 5.8. 
 
  Intercept CPI Gap 
PreGreenspan 2.334 0.789 0.296 
Greenspan 1.797 1.477 -0.935 
High 5.005 0.564 0.910 
Medium 5.755 0.197 0.161 
Low 2.837 0.496 -0.490 
Table 3.  Taylor2 equation coefficients across data sets 
 
Table 4 shows only two consistencies from the expected 
model coefficients.  The Fed Funds coefficient is near 1 in 
all cases, and the Gap coefficient is always negative and 
small, indicating a dampening effect of Gap.  As Gap 
grows past 4, Fed Funds decrease.  The intercept values 
range from .007 to 1.442 while the Adjusted CPI (that is, 
CPI – 2) is sometimes positive and sometimes negative. 
 

Fed Funds Validation Set
 for PreGreenspan and Greenspan Data Sets
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Fed Funds Validation Set for Low, Medium and High Data Sets
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  Intercept Fed Funds Adj. CPI Gap 

PreGreenspan 0.291 0.965 0.019 -0.035
Greenspan 0.047 0.994 -0.007 -0.024
High 1.442 0.862 0.066 -0.027
Medium 0.007 1.002 -0.003 -0.019

Low 0.125 0.983 0.018 -0.022
Table 4.  Values generated from the Econometric Model across data sets. 
 
Table 5 reports the order of significance of the variables 
as used by the neural networks.  Notice that, for times 
when the current rate is High, the variable significance 
shifts and Fed Funds becomes the least important of the 
variables. 

  
Most 
Important   

Least 
Important 

PreGreen. Fed Funds UnRate CPI 
Greenspan Fed Funds CPI UnRate 

Low Fed Funds CPI UnRate 
Medium Fed Funds CPI UnRate 

High CPI UnRate Fed Funds 
Table 5.  Order of variable significance in neural networks 
 
In all the models, we see that the splitting of data has 
given us significantly different equations.  There is no one 
equation that will work equally well across all the data.  
However you decide to split the data, doing so will enable 
you to approximate the set better. 
 

VIII.  MODEL RESULTS ON VALIDATION SETS 
 

The mean squared error was calculated for each of the 
five models tested over each of the five subsets of data.  
The training and validation sets were distinct.  Results 
show the lowest error amounts came from the models 
using all three of the variables for input.  That is, in each 
subset of data, the lowest error came from either the 
Econometric or Neural Network model.    More 
information enabled the models to approximate the target 
more effectively.  The Random Walk model was very 
close to the lowest error in each subset, but never was the 
lowest.  The two formulations of the Taylor model has 
significantly greater errors than any of the other three, 
over all data subsets.  The results are shown in Table 6 
with the lowest error in bold. 

Model / 
Data Set 

Pre-
Green 

Gr-
span Low Med. High 

Random 
Walk 0.676 0.03 0.122 0.271 0.574
Taylor 10.036 8.39 6.651 9.701 16.75
Taylor2 6.793 3 0.985 2.221 1.263
Econo-
metric 0.657 0.03 0.124 0.26 0.613
Neural 
Network 1.121 0.13 0.1 0.269 0.372

Table 6.  Mean Squared Error Comparisons on Validation Sets 
 

Notice, in the results from Table 6, we see that the Neural 
Network was not the best model when the data was split 
simply by time period.  However, when the data was split 
by type based on current Fed Funds level, the Neural 
Network outperformed the Random Walk each time, and 
in 2 of the 3 sets, was best overall.   
 

IX.  CONCLUSIONS 
 

This paper has reviewed four methods for modeling the 
behavior of Federal funds.  They are the standard random 
walk, an econometric model that relates the Federal funds 
to fundamental variables including past values of Federal 
funds and also the neural network approach.  Using 
monthly data from 1958 to 2005 of several important 
macroeconomic variables, the results show that the 
econometric modeling performs better than the other 
approaches when the data are divided into two sets of pre-
Greenspan and Greenspan.  However, when the data 
sample is divided into three groups of low, medium and 
high Federal funds, the neural network approach does 
best.  Actually, the neural network approach does best at 
the extreme sets of high and low interest rates, while the 
methodology based on econometric modeling performs 
best in the mid-range of interest rates.  This is the range of 
interest rates between 5% and 10%. 
The main conclusion of our work is that separating the 
data set into more homogeneous segments makes it 
possible to improve the predictive ability of the equations.  
When the split is based on the current value of the Fed 
funds rate, then the neural network methodology 
outperforms both the random walk and Taylor 
approaches.  When the split is simply time-based, then the 
econometric model is the one to use. 
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