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Abstract: In this paper, we compare existing methods of
estimating the volatility of daily S&P 100 Index for options.

The implied volatility, calculated via the Black-Scholes model,
is currently the most popular method of estimating volatility and
is used by traders in the pricing of options. Historical
volatility has been used to predict the implied volatility, but
the estimates are poor predictors. A neural network for
predicting volatility is shown to be far superior to the
historical method while overcoming the run-time limitation of the
Black-Scholes approach.
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1. INTRODUCTION

The desire to forecast volatility of financial markets has
motivated a large body of research during the past decade {Engle
and Rothschild, 1992). Volatility is a measure of price movement
often used to ascertain risk. Relationships between volatility
and numerous other variables have been studied in an attempt to
understand the underlying process so that accurate predictions
may be made (Merville and Pieptea, 1989; Choi and Shastri, 1989;
Haugen et.al. 1991; Lockwoéd and Linn, 1990; and Dubofsky 1991).
The ability to accurately forecast volatility gives the trader a
significant advantage in determining options premiums.

Both reseachers and traders use two estimates of option
volatility: the historical volatility and the implied volatility.
It is almost routinely reported in various publications of
exchanges that these two series differ, but no significantly
better forecasting model of volatility has emerged. The purpose
of this research is to compare these two existing methods of
predicting volatility for S&P 100 options with a new approach
which uses neural networks. Neural networks, which have been
shown to effectively model nonlinear relationships, prove to be a
superior approach to predicting options volatility in all cases

tested and can be used to develop monthly forecasts.




2. CALCULATING HISTORICAL AND IMPLIED VOLATILITIES

in their seminal work on pricing options, Black and Scholes
(1973) assumed that the price of the underlying asset follows an
It6 process

(1}
ds/S=pdt+adz

where dS/S denotes the rate of return, p is the instantaneous
expected rate of return, ¢ is the expected instantaneous
volatility and 2% is a stanﬁardized Wiener process ,or dZ is a
continuous-time random walk. To simplify their analysis, Black
and Scholes assumed that both p and ¢ were constants and by using
an elegant arbitrage argument, they derived their call option
pricing model. Their formula expresses the call price C, as a

function of five inputs

¢=C(8,X,T,0,r) (2)

where S is the current price of the underlying asset, X is the
exercis; or strike price, T is the time from now to expiration 6f
the option, ¢ is the expected instantaneous volatility and r 1is
the riskless short term rate of interest.

Observe that the p of equation ({1} does not appear in (2).
The mathematical derivation of the call option pricing formula as

shown in Lee, Finnerty and Wort (1990} or Malliaris (1982) shows

that arbitrage requires that the per unit of risk excess returns




between two appropriately designed portfolios must be equal.
Making the necessary substitutions in this arbitrage

relationship, the term containing p drops out. With p now out of
the picture and with four of the five remaining variables

directly observable, an estimate of the asset's volatility o in
{2) becomes the focal point of attention for both theorists and
traders.

There are two main approaches to estimating and predicting
the nonconstant ¢: the historical approach and the implied
volatility approach. The ﬁistorical approach is the simplest
because tomorrow's volatility o¢,,, is an estimate obtained from a |
sample, of a given size, of past prices of the underlying asset.

Suppose that the sample size is n and let
Stonerr » o g St-1r St

denote daily historical prices for the underlying asset. To get
an estimate for o.,,, first compute daily returns, r.,, i=0,...,n-
2, where

rt_i = ln(st_.i) - ln(St-i,l) .

For a sample of n historical prices, we obtain (n-1) rates of

daily return. The annualized standard deviation of these rates
of return is defined as the historical volatility and can be used
as an estimate of o,,. The nearby historical volatility uses 30

f

days of data, the middle historical volatility uses 45, and the



distant historical volatility has 60 daily prices.

An obvious problem with the historical approach is that it
assumes that future volatility will not change and that history
will exactly repeat itself. Markets, however, are forward
looking and numerous illustrations can be presented to show that
historical volatility does not always anticipate future
volatility and a better estimate comes from the Black-Scholes
option pricing model itself {Choi and Wohar, 1992).

Simply stated, supporters of implied volatility claim that
tomorrow's volatility o¢.,, can only be estimated during trading
tomorrow, i. e., in real time. As option prices are being formed
by supply and demand considerations, each trader assesses the
asset's volatility prior to making his or her bid or ask prices
and, accepting the consensus price of a call as a true market
price reflecting the corporate opinions of the trading
participants, one solves the Black-Scholes model for the
volatility that yields the observed call price. When volatility
18 calculated in this way, it is called the "implied volatility",
with the adjective "implied" referring to the volatility estimate
obtained from the Black-Scholes pricing formula. Unlike
historical volatility, which is backwards looking to past
returns, the implied volatility is forward looking to the stock's
future returns from now to the time of the expiration of the
option. This implied volatility technique has become the
standard method of estimating volatility at the mpment of

trading.




3. NEURAL NETWORKS FOR PREDICTION

Neural networks are an information processing technology
which model mathematical relationships between inputs and
outputs. Based on the architecture of the human brain, a set of
processing elements or neurons (nodes) are interconnected and
organized in layers. These layers of nodes can be structured
'hierarchically, consisting of an input layer, an output layer,
and middle (hidden) layers. Each connection between neurons has
a numerical weight associafed with it which models the influence
of an input cell on an output cell. Positive weights indicate
reinforcement; negative weights are associated with inhibition.
Connection weights are "learned" by the network through a
training process, as examples from a training set are presented
repeatedly to the network. Each processing element has an
activation level, specified by continuous or discrete values. If
the neuron is in the input layer, its activation level is
determined in resﬁonse to input signals it receives from the
environment. For cells in the middle or output layers, the
activation level is computed as a function of the activation
levels on the cells connected to it and the associated connection
weights. This function is called the transfer function or
activation function and may be a linear discriminant function,
i.e., a positive signal is output if the value of this function
exceeds a threshold level, and 0 otherwise. It may also be a

f

continuous, nondecreasing function. Feedforward networks map




inputs into outputs with signals flowing in one direction only,
from the input layer to the output layer.

While there are dozens of network paradigms, the
backpropagation network has frequently been applied to
classification, prediction, and pattern recognition problems.
Financial applications of neural networks include underwriting
(Collins, Ghosh, and Scofield, 1988), bond-rating (Dutta and
Shekhar, 1988), predicting thrift institute failure
(Salchenberger, Cinar, and Lash, 1992), and estimating option
prices (Malliaris and Salcﬁenberger, 1993). The term
backpropagation tebhnically refers to the method used to train
the network, although it is commonly used to characterize the
network architecture. In this learning algorithm, mean squared
error and gradient descent are employed to determine a set of
welghts for the trained network. At each iteration, current
weights are updated by minimizing the mean squared differences
between the actua} response of the system to a given example and
the desired reéponse.r The nonlinear response functions generate
gradients of the error function with respect to the weights and
the chain rule is used to determine the appropriate weight
changes which propagate back through the layers of the network.
For more details of this method, see Rumelhart and McClelland
(1986} . Currently, a number of variations on this method exist
which overcome some of its limitations.

Nonlinear, multilayer, feedforward networks ?iffer from

traditional modelling techniques in several ways. Relationships




between inputs and outputs are learned during a training process
in which the network is repeatedly presented with historical
examples. Neural networks possess the ability to approximate
arbitrary mabpings with no apriori assumptions about the nature
of the underlying model required. Also, no assumptions about the
distributions of the variables are required and the variables may
be highly correlated. |

There are several limitations to the use of neural networks
for classification and prediction. First, there are no formal
methods for determining the optimal network topology for a given
task. Although it has been shown that for certain types of
networks, one middle layer is sufficient, the number of middle
layer nodes can affect network performance and must be determined
largely through experimentation. While the number of middle
layer nodes can be arbitrarily large, too many middle layer nodes
can result in the problem of overfitting and result in a network
which lacks the ability to generalize. Other model-building
decisions like the choice of transfer function and learning
parameters also must be determined experimentally. Unlike other
analytical models, neural networks are viewed as black boxes and
it is difficult to interpret the significance of individual input

variables.

4. DATA AND METHODOLOGY
Data have been collected for the most successful options
!

market: the S&P 100 (OEX), traded at the Chicago Board Options




Exchange. Daily closing call and put prices and the associated
exercise prices closest to at-the-money, S5&P 100 Index prices,
call volume, put volume, call open interest and put open interest
were collected from the Wall Street Journal for the calendar year
1992.

Three estimates for the historical volatilities using Index
price samples of sizes 30, 45 and 60 were computed for each
trading day in 1992. We also used the Black-Scholes model to
calculate implied volatilities for the closest at-the-money call
for three contracts: thosé expiring in the current month, those
expiring one month away, and those expiring two months away
(nearby, middle, and distant, respectively)}. Thus, we have
approximately 250 observations for six series of volatilities for
use in our study.

Comparisoné were made between the nearby historical, implied
and network volatility estimates. Because the neural network
must have sufficient previous data in order to generalize, these
estimates were developed using each method for June 22 through
December 30, 1992. Trading cycles were used és the predictin
periods, with each trading cycle ending the third Friday of the

month.

5. A COMPARISON OF HISTORICAL AND IMPLIED VOLATILITY ESTIMATES
Phe historical and implied volatility for the nearby
contract are graphed together in Figure 1 for June 22 through

4

December 30, 1992. As can be observed, the historical estimate




significantly underestimates the volatility used by most traders,
i.e., the implied volatility. Since the historical volatility is
an average based on returns from 30 preceding days, it is not
surprising that the estimate smoothes out the peaks, giving a
value for each day which is less variable, and thus less
sensitive to daily market fluctuations. The implied volatility
for any given day uses only trading information from that day,
not a previous time period, to generate a value., Thus, the
implied volatility is more reflective of market changes.

The average MAD and MéE for the entire forecasting period,
from June 22 through Dec. 30 were 0.0331 and 0.0016. The
proportion of times which the historical volatility correctly
predicted that the implied volatility would increase or decrease
are shown in the last column of the table. An overall average of
the number of times a change was correctly indicated is .4439,

i.e., a little less than half of the time.

Table 1. A Comparision of Historical and Implied Volatilities

Dates of Proportion of
Forecast MAD MSE Correct
_ Directions

Jun 22--Jul 19 .0318 ,0012 8/19 = .421
Jul 20--Aug 21 .0292 .0019 11/25 = .440
Aug 24--Sep 18 .0406 .0018 12/18 = .667
Sep 21--0ct 16 .0479 .0027 7/20 = .,350
Oct 19~-Nov 20 L0213 .0008 14/25 = .560
Nov 23--Dec 18 .0334 .0014 (8/18 = .444
Dec 21--Dec 30 .0294 .0009 2/6 = .333
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6. DEVELOPMENT OF THE NEURAL NETWORKS

To develop a neural network which is capable of generalizing
a relationship between inputs and outputs, the training set
selected must contain a sufficient number of examples which are
representative of the process which is being modelled.

Therefore, the neural network models developed to predict
volatility were trained with data sets from historical data from
Januvary 1 through July 18 and used to make predictions for six
‘trading cycles beginning with the period July 20 through August
21 and ending with the period from November 23 through December
31. All prior historical data was used when predicting the
volatility for the next trading period. Predicting the
volatility for the next cycle is a rather rigorous test of the
forecasting capabilities of the network since we are asking it to
predict volatility for up to 30 days in the future.

There is no well-defined theory to assist with the selection
of input variables and generally, one of two heuristic methods is
employed. One approach is Eo include all the variables in the
network and perform an analysis of the connection weights or a
sensitivity analysis to determine which may be eliminated without
reducing predictive accuracy. An alternative is to begin with a
small number of variables and add new variables which improve
network performance. In this research, the latter was used and
variables were selected using existing financial Fheory,

sensitivity analysis, and correlation analysis. Thus, a number
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of preliminary models were developed to determine which input
variables of the group available in the data set would best
predict volatility.

‘ The first models were developed with variables representing
volatility lagged from 3 to 7 periods to determine an appropriate
set of lag variables. Next, other networks were developed and
trained to determine which variables were the best predictors of
volatility. The final models include the following 13 variables:
change in closing price, days to expiration, change in open put
volume, the sum of the at—fhe—money strike price and market price
of the option for both calls and puts for the current trading
period and the next trading period, daily closing volatility for
current period, daily closing volatility for next trading period,
and four lagged volatility variables. By including both the
time~dependent path of volatility and related contemporaneous
variables in our model, better predictions were achieved than
with past attempts to predict volatility.

The backpropégation network developed to predict volatility
has 13 input nodes representing the independent variables used
for prediction, one middle layer consisting of 9 middle nodes,
and an output node representing the volatility. The cumulative
Delta Rule for training was selected, with an epoch size of 16,
and decreasing learning rate initially set at 0.9 and an
increasing momentum, initially set at 0.2. The networks were
trained using Neuralworks Professional II software from

f

Neuralware.

12




6. A COMPARISON OF THE NEURAL NETWORK AND IMPLIED VOLATILITY
ESTIMATES

Using historical volatility as a benchmark, we evaluated
the performance of the neural network by measuring mean absolute
deviation, mean squared error, and the number of times the
direction of the volatility (up or down) was corrected predicted.
These results are shown in Table 2, where comparisons are made
between the volatility forecasted by the network and tomorrow's
implied volatility. The overall MAD for the entire period was
,0116 and the MSE was .0001 as compared to 0.0331 and 0.0016 when
the historical was compared to the implied volatility.
Furthermore, for each forecasting period, the MAD and MSE were
considerably lower, see Tables 1 and 2. In each of the time
periods, the proportion of correct predictions of direction made
by the neural network was greater than that of historical
volatility. The overall proportion of correct direction
predictions was 0;794, as compared to .4439 for the historical
volatility estimate. This is not surprising since historical
volatility smoothes out the estimate because it is an average of

30 values.
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Table 2. Neural Network and Implied Volatilities

Dates of ) ‘ Proportion of
Forecast MAD MSE Correct
Directions

Jun 22--Jul 19 .0148 .0003 16/19 = .B842
Jul 20--Aug 21 L0107 .0002 16/25 = .640
Bug 24--Sep 18 L0056 .0001 13/18 = .722
Sep 21--0Oct 16 L0127 .0003 19/20 = .950
Oct 19--Nov 20 .0059 .0001 20/25 = .800
Nov 23--Dec 18 .0068 L0001 15/18 = .833
bec 21--Dec 30 .0039 .0000 5/6 = ,833

7. DISCUSSION

The results of this comparative study of neural networks and
conventional methods for forecasting volatility are encouraging.
Because historical estimates are traditionally poor predictors,
traders have been.forced to rely on formulas like the Black-
Scholes which can, be solved implicitly for the real-time
volatility. But these models are difficult to use and limited
since they can only provide estimates to the traders which are
valid at that current time. Furthermore, they fail to
incorporate knowledge of the history of volatility. The neural
network model, on the other hand, employs both short-term
historical data and contemporaneous variables to forecast future
implied volatility.

/

The neural network approach has two advantages which make it

14




more useable as a forecasting tool. First, predictions can be
made for a full trading cycle, thus avoiding the problems
associated with the need for real-time calculations. Secondly,
and more importantly, the network forecasts, in the cases we
tested, were very accurate estimates of the volatility preferred

by traders.
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