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Abstract.  This paper presents a decomposition of inflation and its volatility. According to the traditional quantity 
theory of money, the rate of inflation is decomposed into three components: the rate of change in the money 
supply, plus the rate of change in the velocity of circulation, minus the rate of change in real output. We derive 
a generalization of this decomposition by postulating that the rate of change of money supply, velocity, and output 
follow diffusion equations. Using stochastic calculus techniques, two expressions are obtained decomposing infla- 
tion and its volatility as a sum of several economically important terms. We also use two sets of U.S. data to 
illustrate these decompositions with actual numbers. 
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1. Introduction 

Inflation has played a significant role in economic history for as long as money has been 
used as a means of exchange. The importance of inflation as a topic of economic research 
is evidenced by the existing large literature surveyed earlier by Bronfenbrenner and Holzman 
(1963) and more recently by Parkin (1987). 

This is a paper on inflation using a quantity theory of money framework. Friedman and 
Schwartz (1982) state that the quantity theory of money is "a theory that has taken many 
different forms and traces back to the very beginning of systematic thinking about economic 
matters." We do not wish here to review this theory in detail. Recently, Friedman (1987) 
has surveyed this theory very skillfully. In section 2, the quantity theory variables are intro- 
duced and the deterministic decomposition of inflation is obtained in equation (3). The 
extension of the quantity theory of money in the continuous time stochastic case is presented 
in section 3, and section 4 derives the stochastic decomposition of inflation and its volatility 
using the celebrated Itc3 's lemma. Section 5 offers a discussion of the generalization, and 
section 6 presents two numerical illustrations from two different data sets. The last section 
summarizes the paper and offers a conclusion about the contribution of this research. 

2. Nonstochastic quantity theory of money 

Let M, V, P, and Ydenote the money stock, velocity of circulation, the implicit price deflator, 
and real gross national product respectively. The identity 

MV=- PY or P -  MV/Y (1) 
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has received great attention by economists. Fisher (1963) notes that: "This theory, though 
often crudely formulated, has been accepted by Locke, Hume, Adam Smith, Ricardo, Mill, 
Walker, Marshall, Fetter, Kemmerer, and most writers on the subject. The Roman, Julius 
Paulus, about 200 A.D., states his belief that the value of money depends upon its quantity." 

We observe that economists have considered the variables M, V, P, and Yto be functions 
of time and by taking time derivatives they have obtained from (1) 

p = (~4V + ( " M ) Y - ) ' M V  !VIV (,'M ~'MV 
y2 = --y- + y y y (2) 

where a dot above a variable denotes time derivative. From (2) we conclude that 

P - M + ~" - Y (3) 

which simply tells us that the proportional change in the price level is equal to the sum of 
the proportional change in the money stock, plus the proportional change in the velocity of 
money, minus the proportional change in real output. Note that in decomposing the rate of 
inflation into three terms, equation (3) relates sample averages during the estimation period. 

3 .  S t o c h a s t i c  q u a n t i t y  t h e o r y  o f  m o n e y  

A casual observation of actual data for lf,1/M, f/V, and ~'/Y shows that these are not smooth 
deterministic variables. For example, figure 1 plots annual rates of change for money growth, 
real output, and velocity for 1947-1988, and suggests that these rates follow Its3 processes. 
Following Merton (1975, 1982), we postulate that the behavior of the proportional rate 
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Figure 1. Annual rates of change for money growth, real output, and velocity for 1947-1988. 
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Figure 1. Continued. 

of growth of money, velocity, and output are described by the It6 equations given in (4), 
(5), and (6). 

dM(t) 
M(t) = IzM(t' M ) d t  + aM(t , M)dZM(t ) (4) 

dV(t) 
V(t) = Izg(t' V )d t  + oF(t, V)dZv(t)  (5) 

dY(t) 
Y(t) = /zy(t, Y )d t  + ay(t, Y)dZy(t) .  (6) 
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Financial economists are familiar with Itc3's equations from the theory of trading in con- 
tinuous time, and macroeconomists, such as Fischer (1975), Gertler and Grinols (1982), 
or Grinols and Turnovsky (1993) have used such equations extensively. To save space, we 
do not review the elements of continuous time stochastic modeling. An extensive discus- 
sion, with numerous examples from economics and finance, can be found in Malliaris and 
Brock (1982). G ikhman and Skorokhod (1969) exposit the mathematical foundations of 
stochastic modeling in detail, while Malliaris (1983, 1990) and Merton (1982) give gen- 
eral overviews. 

4. Decomposition of inflation and its volatility 

Suppose that money supply, velocity of circulation, and real GNP follow stochastic proc- 
esses described by the ItS equations (4)-(6). Heuristically, one may argue that the rate 
of inflation must also follow a process described by an It~ equation. This is true because 
of the generalized It~'s lemma which is stated below. 

Generalized It~'s Lemma. Let n one-dimensional It6 processes Xi(t) be given by 

dXi(t ) = f ( t )d t  + ai(t)dZi(t), i = 1, 2 . . . .  , n 

Suppose that u = u(t, xl, x2 . . . . .  x.): [0, T] × R" ~ R has partial derivatives 

ut, uxi, Ux:: i , j  < n 

which are continuous. Then, the process 

Y(t) = u[t, Xl(t) . . . .  , X.(t)] 

is also an ItS process given by 

n 1 ~ ~ UxixjdXidX j dY(t) = utdt + Z uxidXi + 
i=1 i=1 j = l  

where the product dXidX j can be calculated using the following multiplication rules: 

dZjZ j  = p j t  f o r i  ~ j ,  i , j  < n; 

dZidZj = dt f o r i  = j ,  i, j ,  <_ n; 

dtdZ i = O, for i = 1, 2, . . . ,  n. 

d t d t = O .  
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Using Itc3 's lemma, equations (4)-(6) and the identity (1), several calculations yield that 
inflation follows at ItS process given by 

d P  
--if- = [IZM + #V -- lZY + aMaVPMV -- aMaYPMY - -  aVaYPVY + a2] d t  

+ [ a m d Z u  + a v d Z v  - a r d Z r ] .  (7) 

Recall that all terms in (7) are random variables. When we write/*M we actually denote 
a random variable tzM(t, w): [0, T] × fl ~ R. This means that d P / P  is a random variable 
and one can compute its expectation and variance. These are given by 

Var 

= E(IZM + # v  -- IZy + aMavPMv -- OmaypMy -- a v a y p v y  + a2)dt;  (8) 

= (o~t + a 2 + a2r + 2aMavPMv -- 2oMarPMr -- 2 a v o r p v r ) d t  (9) 

Equations (8) and (9) are both informative and intuitively clear. Equation (8) says that 
expected inflation is the sum of the expected growth in money supply and velocity minus 
the expected growth in output as well as the result of four more terms which we discuss 
in the next section. Equation (9) relates the variance of inflation to the three variances 
a21, a 2, or 2 and also to three other terms. 

5. Discussion 

Several remarks can be made about (7). First, this equation generalizes the deterministic 
quantity theory equation (3). To obtain (3) from (7) simply assume that the three diffusion 
coefficients are zero; that is, let aM = av = ay = 0. This tells us that the deterministic 
quantity theory of money ignores the existence of nonzero variances in the data concerning 
money supply, velocity of money, and real output. 

Second, equation (7) identifies several terms which are important. These terms are 
OMaVPMV , (~MO'ypMy, aVO'yflvy and a 2. The economic meaning of these terms is straightfor- 
ward. Note that aMaVPMV denotes the covariance between the proportional rates of change 
of money supply and velocity; a M a r P M r d e n o t e s  the  covariance between the proportional 
rates of change of money supply and real output; finally, a v a r P v r  denotes the covariance 
between the proportional rates of change of velocty and real output; a~,denotes the variance 
of the proportional rate of change of real output. The three terms in the second bracket in (7) 
are the three sources of noise, dZM, d Z  v, d Z  r, each multiplied by the standard deviations of 
the proportional rate of change of the money supply, velocity, and real output, respectively. 

Third, equation (7), not only identifies several terms described above, but also specifies 
the exact relationship among these terms. Although economists recognize the importance 
of covariances between rates of growth of money supply and real output, no equation has 
appeared in the economic or econometric literature that has a specification such as (7). 
Some insights are occasionally obtained about the various covariances in (7) from simple 
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single-equation econometric models, but such models are not as complete as (7). For ex- 
ample, one can regress linearly dP/P on d M / M  and dY/Y and obtain some estimates of 
covariances, but such a model would be a special case of (7). 

Fourth, because of the tautological nature of the quantity theory of money, (7) gives a 
rather exhaustive list of factors that can affect dP/P Such a list of factors can be of great 
importance both theoretically and empirically. Theoretically, the interest in (4)-(6) is moti- 
vated by the goal of obtaining general results. Empirically, the computation of E(dP/P) 
and Var(dP/P) can be expected to be more interesting in a general model than in a special- 
ized one. 

Fifth, equations (7)-(9) remain tautological. Lucas (1980) has suggested that some theo- 
retical models, such as Sidrauski (1967a, 1967b) or Tobin (1965), have been developed 
to illustrate the dependence of inflation on the growth of money supply. Therefore, the 
deterministic quantity theory of money and its implications have some theoretical coherence. 
Aspects of the present stochastic version of the quantity theory of money could be sup- 
ported by Gertler and Grinols (1982) and more recently Den Haan (1990) and Grinols 
and Turnovsky (1993). More specifically, Grinols and Turnovsky (1993) develop a three- 
agent model with continuous time stochastic variables, uncertain private production, uncer- 
tain government expenditures, and forward-looking rational agents. Although Grinols and 
Turnovsky (1993) wish to study the role of risk in a stochastic macroeconomic model with 
a financial sector, they confirm that an increase in the growth rate of money supply in- 
creases inflation and also that increased uncertainty in monetary growth rates also affects 
the variablity of inflation. Thus their results support our equations (8) and (9), 

6. Examples 

We now use two annual U.S. data sets to numerically decompose inflation and its volatility. 
The first data set, obtained from Gordon (1990), uses annual rates of growth of real GNP, 
the implicit price deflator M1, and velocity for the post-WWII period 1947-1988. To com- 
pute the expectation of U.S. inflation and its variance from (8) and (9), we need numerical 
expressions for the three It6 processes describing money supply, velocity, and real GNP 
changes. In other words, we need estimates for the six functions i~ M, aM, IZv, av, I~Y, and 
or in (4)-(6). From equations (8) and (9) we also observe that we need estimates for the 
three correlation functions Puv, amY, and Ovr. The simplest and most important case is 
when these six random functions are approximated by their sample annual means and stan- 
dard deviations for the data used during the sample period 1947-1988. Straightforward 
calculations allow us to write 

dM(t) _ .0478dt + .0303dZM(t) (10) 
m(t) 

dV(t) = .0261dt + .0336dZv(t)  (11) 
v(t) 

dY(t) _ .0324dt + .0262dZy(t) (12) 
Y(t) 
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as numerical expressions for (4)-(6). This is the most important case because we wish 
to contrast the traditional deterministic quantity theory of money, which uses constant sam- 
ple means as explained in section 2, with the generalized stochastic version. This can be 
done when we compare the one deterministic equation (3) with the two stochastic equa- 
tions (8) and (9). Note that (3) relates sample means which suggests that we also use sam- 
ple means in (8). 

The implication of (10)-(12) is that the level variables M(t), V(t), and Y(t) follow sto- 
chastic processes of the form 

M(t) = M(0)exp{[.0478 - 0.5(.0303)z]t + .0303ZM(t)} 

V(t) = V(0)exp{[.0216 - 0.5(.0336)z]t + .0336Zv(t)} 

Y(t) = Y(0)exp{[.0324 - 0.5(.0262)z]t + .0262Zr(t)} 

where M(0), V(0), Y(0) denote money supply, velocity, and real GNP for the initial year 
of 1947; t denotes time measured in years since 1947; and ZM(t), Zv(t), and Zr(t) are 
standardized Wiener processes. These three last equations are generalizations of the simple 
deterministic equations that describe the usual exponential rate of growth of M(t), V(t), 
and Y(t). Furthermore, when taking the natural logarithms of each of these last three equa- 
tions we may conclude that such a natural logarithm is a random variable distributed nor- 
mally with a certain mean and variance. For example 

E 1 1 In ~ - .0478 - ~ (.0303) 2 t + .0303ZM(t) 

has mean [.0478 - 0.5(.0303)z]t and variance (.0303)2t. Since the logarithm of M(t)/M(O) 
is a normally distributed random variable we say that the money supply, velocity, and real 
output are lognormally distributed. For a detailed analysis of these issues, see Cox and 
Rubinstein (1985). 

The next question to be addressed is the computation of the three correlation functions. 
Again, the instantaneous random correlations are approximated by their sample averages 
during 1947-1988 as follows: we work backward by computing the annual errors dZM(t), 
dZv(t), and dZr(t) from (10)-(12) and the actual corresponding rates. In other words, for 
each period t in our sample 1947-1988, given the actual rates dM(t)/M(t), dV(t)/V(t), 
dY(t)/Y(t), and the approximations in (10)-(12), we solve for dZM(t), dZv(t), and dZy(t). 
Afterward we use the error sets {dZ~t(t), dZv(t), dZy(t), t = 1948-1988} to compute 
P~re = - .5770 ,  PMY = • 1321, and PrY = .2757. Parenthetically, we also report that the 
error sets {dZM(t), dZv(t), dZr(t)} satisfy the required properties of a standardized Wiener 
process that E(dZM) = E(dZv) = E(dZr) = 0 with all three variances being equal to 1. 

With the above preliminaries completed, the U.S. rate of inflation and its variance during 
1947-1988 can be decomposed as: 
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dP 
- ~ -  = # M  d- ~ V  - -  I'tY "[- tYMtTVPMV - -  a M t Y Y P M Y  - -  ~TV~TYPVY "-}- i f 2  

= (0.0478) + (0.0261) - (0.0324) + (0.0303)(0.0336)(-0.5770) 

-- (0.0303)(0.0262)(0.1321) -- (0.0336)(0.0262)(0.2757) + (0.0262) 2 

= 0.0413 (13) 

dP 
Var ~ = 02 + ~2 + o2 + 2aMaVPMV -- 2OMaYPMy -- 2aVarPVY 

= (.0303) 2 + (.0336) 2 + (.0262) 2 + 2(.0303)(.0336)(--.5770) 

- 2(.0303)(.0262)(.1321) - 2(.0336)(.0262)(.2757) 

= 0.00087 (14) 

Note from (14) that inflation's standard deviation is given by {Var dP/P} v2 = .0295, 
that is, inflation's annualized volatility during 1947-1988 is 2.95%. 

If, instead of using (13) and (14) to decompose inflation and its variance we compute, 
from inflation data during 1947-1988, its average and standard deviation we obtain 4.15 % 
and 2.52 %, respectively. Obviously, the tautological nature of the quantity theory of money 
forces these numbers to be equal to (13) and (14), except for rounding offerrors. However, 
analysis of (13) and (14) gives a much richer insight into inflation and its variance than 
do the two numbers 4.15 % and 2.52%, because we have an explicit numerical expression 
of these numbers as sums and differences of specific terms. 

To contrast the above results with another period we use next the long-run U.S. data 
collected and reported in Friedman and Schwartz (1982) for the period 1869-1947. In this 
sample M, Y, and P denote M2, national income, and the implicit price deflator. 1 Using 
the same procedure, the approximations of (4)-(6) are now given by 

dM(t) _ .0607dt + .0681dZM(t) (15) 
m(t)  

dV(t) _ .0196dt + .0725dZv(t) (16) 
v(t) 

dY(t) _ .0330dt + .0727 dZr(t) (17) 
r(t) 

while aMY = .1304, P~,  = .5129, OVY = .7531. 
In contrast to (13) and (14), inflation and its variance for the almost century-long data 

sample are decomposed below: 
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dP  
P 

_ I'tM + t'tV _ I'tY + ( 7 M f f V P M V  _ (yM~TYOM Y _ ( y V t r Y p V  Y + i f2  

= (.0607) + ( - .0196)  - (.0330) + (.0681)(.0725)(.7531) 

- (.0681)(.0727)(.5129) - (.0725)(.0727)(.7531) + (.0727) 2 

= 0.001 (18) 

dP  
Var -if- = (r~t + (r~ + ~ ,  + 2aMtrVPMv -- 2(rg(ryPMy -- 2Ov(rrPvr 

= (.0681) 2 + (.0725) 2 + (.0727) 2 + 2(.0681)(.0725)(.1304) 

- 2(.0681)(.0727)(.5129) - 2(.0725)(.0727)(.7531) 

= 0.003449 (19) 

From (19) we compute an annual inflation volatility of 5.87%. The actual numbers for 
inflation and its volatility obtained directly from annual inflation data during 1869-1947 
are identically the same, i.e., 0.1% and 5.87%, respectively. 

What insights can the decompositions of these two sample periods offer? First, actual 
inflation during 1947-1988 was much higher than actual inflation during 1869-1947; the 
respective numbers are 4.15 % and 0.1%. Equations (12) and (17) tell us that real output 
during these two periods grew at a similar rate, i.e., 3.24% for 1947-1988 and 3.3% for 
1869-1947. What then explains the substantial difference in inflation rates? Looking at 
money growth rates complicates the picture: Money grew at a slower rate during 1947-1988 
than it did during 1869-1947, i.e., 4.78% in contrast to 6.07%. Intuitively, one would 
expect faster money growth to contribute to higher inflation when real output grows at 
the same rate. The decomposition shows that the velocity of money solves partially the 
puzzle: During 1869-1947, the velocity of money declined by 1.96% per year while it 
grew by 2.61% during 1947-1988. 

The second and final insight concerns the volatility of inflation. Observe that it is much 
higher during 1869-1947 than during the post-WWU period, i.e., 5.87% compared to 2.52%, 
respectively. The deterministic quantity theory of money offers no explanations for such 
differences. An economist's intuition would suggest that higher inflation volatility may be 
generated by higher volatility of money growth and/or higher volatility of real output. Such 
an intuition is supported by the data. During 1869-1947, the volatilities of money growth 
and real output were 6.81% and 6.42%, compared to 3.03 % and 2.62 % respectively for 
1947-1988. But without a specific model these volatilities cannot be put into an algebraic 
expression. Equations (14) and (19) show the exact decomposition of inflation volatilities 
as a sum of the volatilities of money growth, output growth, and velocity change with also, 
their three covariances. 

7. Summary and conclusions 

This paper addresses the important question of how inflation and its volatility can be decom- 
posed into several terms to offer insights into the economic sources that generate inflation. 
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Such a decomposition requires an acceptable inflation model and this paper uses the quan- 
tity theory to extend its deterministic dynamic version into a continuous time dynamic sto- 
chastic version. This generalization is justified both by the actual behavior of the quantity 
theoretic variables and by the underlying methodological background of diffusion modeling. 
The generalization obtained yields two expressions that decompose both inflation and its 
variance into several, economically meaningful terms. Finally two examples illustrate the 
numerical decomposition and contrast the factors that explain U.S. inflation and its volatility. 
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