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Abstract—1In this paper, we present a model for promotional advertising and underreporting of
incomes. The model is based on the integral part of the product of a discrete random variable with
a continuous uniformly distributed random variable.
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1. INTRODUCTION

Let X and Y be continuous nonnegative random variables. The model
Y=UX, (1.1)

where U is distributed independently of X in (0,1), is known to have important applications
in different fields. In income distribution analysis, X represents true income and Y reported
income [1]. In inventory decision making, X represents demand for an item within a unit time
interval and Y item units in stock within the same time interval [2}. Moreover, in discounting
cash flows, X represents a payment $o be paid at some future time and Y the present value of
the payment (3,4].

Let X be 2 discrete random variable with values in {1,2,...} and U distributed independently
of X in (0,1). A stochastic multiplicative model as in (1.1} appropriately modified to account
for discrete random variables X, Y is given by

Y = [UX), (1.2)

where [UX] denotes the integral part of UX. Krishnaji [5], though not referring to financial
models, has used (1.2), with U uniformly distributed in (0,1), to establish a characterization of a
zero-truncated Yule distribution. If Px(z) is the probability generating function of the random
variable X, and U is uniformly distributed in (0, 1), then
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is the probability generating function of the random variable Y [5]. The present paper proposes
a model which is an extension of model {1.2). Properties and applications of the model are
established. '

From a theoretical point of view, the proposed model can be considered, in some sense, as a
discrete analogue of a particular case of a continuous model proposed by Artikis and Malliaris [6].
The model studied in this paper is based on the concept of “the integral part” and hence the
model is not the direct discrete analogue of Artikis and Malliaris’ continuous model. Moreover,
the proposed discrete model is applied to underreporting of income and promotional advertising,
whereas Artikis and Malliaris’ continuous model is applied to financing new investments.

2. THEORETICAL RESULTS

Consider the random sum
X1+ X4+ Xn,

where {X, :n=1,2,...} is a sequence of independent discrete random variables with val-
ues in {1,2,...}, each with probability generating function Px(z), and N is a discrete ran-
dom variable taking values in {1,2,...} with probability generating function Py(z), indepen-
dent of {Xn:n=1,2,...}. Let V,W be independent discrete random variables taking values
in {1,2,...} with probability generating functions Py{z), Pw(z), respectively, independent of
{Xn:n=12,...} and N. PFurthermore, let {7 be a continuous random variable distributed
independently of {X, :n=1,2,...}, N,V and W in (0,1).
Consider the model

S=V+UXri+Xa+ -+ Xy +W+1). (2.1

The distribution of the above model is, in general, very complicated. This section explicitly
derives the distribution of a particular case of model {2.1).

THEOREM 1. Let U be uniformly distributed in (0,1). Then

Y1 — Py (y)Pn(P
Ps(z) = Pv{z)exp {—-f V(?'f)_ ‘2( x(¥)) dw} (2.2)
is the probability generating function of S if and only if
SEVHUX +Xo+ -+ Xy +5+1)] (2.3)

where & means equality in distribution.

ProoF. Only sufficient conditions will be proved since the necessity can be proved by reversing
the argument. Using probability generating functions in (2.3}, we get the integral equation

1
1—z

1
Ps(z) = Py(2) ] Pu(Px (%)) Ps(¥) d. @2.4)

Since Ps{z) and Py () are probability generating functions, they are differentiable for 0 < z < 1.

Multiplying both sides of (2.4) by .
. -2z

, Py(z)’
such that Py{z) # 0 and differentiating, we get the differential equation

v 1= Pr(2)Pn(Px(2) | Pylz)
Pi(z) = { 7 T + P:(z) } Ps(2) (2.5)
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with the condition Pg(1) = 1. Integrating in (2.5) we get

i
Ps(2) = Py(z) exp {- / 1-P V("f)f :’b(P x () dw}. | (2.6)

From (2.6), it follows that Ps(z) is the product of two probability generating functions. The
first term in the right hand side of (2.6) is the probability generating function of the random
variable V' and the second term is a self-decomposable probability generating function, The class
of discrete self-decomposable distributions is closed under convolution. Moreover, the discrete
self-decomposable distributions are unimodal [7}. Assuming that Py (2) is self-decomposable, it
follows that Pg(z) is self-decomposable, and hence, the corresponding distribution is unimodal,
The existence of a unique mode is clearly essential, since the presence of multimodality introduces
a degree of localized ambiguity into the decision process. The class of discrete self-decomposable
distributions includes many distributions which are important in statistics, actuarial science and
in financial economics. .

The Geometric distribution, the Poisson distribution, the mixture of Poisson distribution whose
mixing distribution is self-decomposable with positive support, and the stable distributions are
examples of discrete self-decomposable distributions.

We consider two particular cases of the distribution of the random variable 3. By putting

PN(Z) =2

Py(z) ==,
and

Pv(z) =z

in (2.6) we get that
Ps(z) = zexp {(z -1+ %(z2 - 1)}

which is the probability generating function of the shifted Hermite distribution with parameters 1
and 1/2, see {8]. Moreover, by putting

Az
PN(Z)-"ET({-:-;\TZ-, 0<A<l,
= P
PX(‘Z)""‘}._(I_”)Z» G<ﬂ<11
and
Z
Pv(2)=1fqz, 0<p<l, g=1l-p,

with p = Ap and Ap < 1/2, in (2.6) we get that

{a-p)/q°
L Iy e _
=25 (2m) il e )

which is the product of three probability generating functions. The first probability generating
function belongs to the Geometric distribution with parameter p, the second belongs to the Polya
Eggenberger distribution with parameters, q/p and (¢~ p)/pg, and the third belongs to the Polya
Aeppli distribution with parameters 1/¢ and p, see (8],
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3. APPLICATIONS OF THE MODEL

In this section, we illustrate how (2.1) and (2.3) arise in economics. Suppose that a man-
ufacturing firm produces N products. The number of products N is random because every
year new products are added and some old ones are eliminated from production, Denote by
X, :n = 12..., the total number of customers of products 1,2,..., who bought each at
least one unit of a given product. Observe that X, is measured in integral parts because the
units denote number of customers. We assume that the random variables X.:n=12,...,
are independent because the firm’s N products are dissimilar. Furthermore, suppose that the
random variable W -+ 1 denotes the number of customers who bought in the past but not during
the current year. From the total number of custorners, both current and old, the firm uses the
function U to select a certain subset. For example, suppose that the firm wishes to advertise to
customers who are in a certain age bracket, say between 40 and 45 years old. In such a case,
U wilt select from

X+ Xo4 o+ Xn+W+1

the subset of the customers in such an age bracket.

Finally, let V' denote potential customers who have not as yet purchased anything from the
firm and who are targeted for promotional advertising, Under the scenario described, the random
variable

S=V+[U(X1+X2+---+XN+W+1)1 (3.1)

gives the total number of customers to receive promotional material. The usefulness of Theorem 1
is mainly demonstrated through equation (2.3) which is the sufficient condition for the evaluation
of the distribution of S from the distributions of V,U; Xp:n=12,..., and N.

In income distribution analysis, the random variable § in (3.1) can be interpreted in the
following way. Consider a firm whose total annual income is

V+X1+X2+"'+XN+W+1,

where V' denotes income from seeurities, X1 +Xo+- - -+ Xn income from NN sales of a product, and
W +1 income from other assets of the firm not used in its production process. We suppose that the
random variables V, Xy :n=1,2,..., and W are measured in integral parts of some convenient
unit. If the firm reports income V and reports a fraction U of income X1+ Xo+- -+ XN LW+,
then the random variable § in (3.1) denotes the annual income reported by the firm.
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