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Abstract

The October 1987 stock marketl crash challenged the
prevailing financial models of a random walk and led to
the emergence of a new and competing model of stock
price time series. This new approach supporis a non-
random underlying structure and is labeled chaotic
dynamics. If a neural network can be constructed which
defermines market prices better than the random walk
madel, it would support those who claim that they have
found statistical evidence that a chaotic dynamics
structure underlies the market. This paper constructs a
neural network which lends support to the deterministic
paradigm.

1, Introduction

For a long time, it was believed that price changes in
the stock market were, to a large extent, random [4].
However, the October 1987 stock market crash challenged
the then prevailing financial models of a random walk. A
new and competing model of stock price time series has
emerged which supports a non-random underlying
structure in the market. This approach is labeled chaotic
dynamics.

The chaotic dynamics approach is a deterministic model
which yields a time series behavior that appears random
when in fact such a series is generated by a nonlinear
deterministic equation. Sometimes small input changes
can produce very divergent outputs, causing a seemingly
orderly system to become chaotic. The chaos appears to
be random and unpredictable while it is actually following
strict mathematical principles. Although deterministic,
chaotic dynamics, when graphed, looks like a random
walk. Preliminary statistical evidence has not succeeded
in rejecting the presence of chaos in the S&P 500 Index
series. The possibility that the underlying dynamics of
the S&P 500 might follow a model of low order,
nonlinear, detorministic chaos, motivates the search for a

neural network which can indicate the existence of such
a structure.

Neural networks, built to pattern the way a brain
learns, do not require that the relationships among
variables be specified in advance. If a neural network
can be constracted which determines market prices, this
would imply that the network has discovered an
underlying structure in the data. Such a result would
challenge the random walk hypothesis and would support
those who claim that they have found statistical evidence
that & chaotic dynamics structure underlies the market.
(6]

The implications of this investigation are quite
significant for several reasons. First, the neural network
results will give evidence as to the appropriateness of ons
of the two alternative paradigms, random walk or chaotie,
Second, support for the chaotic paradigm would imply
that active management of an S&P 500 portfolio is
possible since the S&P follows a non-linear deterministic
model. And third, if a neural network can outperform the
random walk, then researchers would be encouraged to
search for oxpressions linking the unknown but
deterministic patiern of the S&P 500 to the explanatory
variables,

2. Review of the three models

In its simplest formulation we define the sequence of
prices, denoted by {p(f): t = 0, 1, 2, ...}, to follow a
random walk if p(t+1) = p(f) + e(t+1), where s(t+1) is
the value obtained from sampling with replacement from
a certain distribution with a given population mean pand
a variance of ¢®. This equation expresses tomorrow's
price as a random departure from today's price, or
equivalently, the price change between today and
tomorrow, ie. p(t+1) - p(f), as random. It is usuaily
assumed that = 0. The random walk model is utilized
to convey the notion that stock prices cannot be
systematically forecasted [9].

The effioient market hypotheses was developed to




rationalize the random walk behavior claiming that the
current price p(t} fully and correctly reflects all relevant
information and because the flow of information between
now and next period cannot be anticipated, price changes
are serially uncorrelated. Though numerous studies have
confirmed market efficiency, other studies have rejected
it. The rejections of the random walk paradigm were
considered to be anomalies by efficient hypothesis
researchers. Howsever, the October 1987 stock market
crash caused a serious reevaluation of the efficient market
hypotheses, Shleifer and Summers [12] are quite critical
and they claim that "the stock in the officient market
hypothesis -- af least as it has been traditionally
formulated -- crashed along with the rest of the market on
October 19, 1987".

If the random walk model is not a satisfactory
deseription of stock price behavior and if prices move
without any obvious change in the fundamentals of the
economy, whal methodological altornatives exist to
explain the observed price patterns? To answer this
question, 2 handful of quantitative economists investigated
the deterministic methods of Ruelle and Takens [10] who
studied the physical problem of turbulence. These authors
and the numerous physicists who followed them
developed a very active field of current research calted
chaotic dynamics, Chaotic dynamies yields a time series
behavior that appears random when in fact such a series
is generated by a nonlinear deterministic equation of high
degree. The chaos in the system appears to be random and
unpredictable while it is actually following strict
mathematical principles.

Consider a real-valued function fR - R. We are
interested in the time series generated by this function
starting from some arbitrary x, € R. Denote by £ =
fIfx)} = [ o {{x) where o means composition and in
general let f* = f o f 0 .. 0o f(x) mean n compositions.
The time series takes the values x,, f(x), £*(x.), ..., I'{(x,),
., for t = 0, 1, 2,.., n, For this to describe a chaotic
function it must satisfy three requirements.

Tirst it must sample infinitely many values. The
second requirement is sensitive dependence on initial
conditions. This condition says that there are time series
that start very close to each other but diverge
exponentially fast from each other. The third requirement
is that the periodic points of f are dense in R.

The methodology for detecting chaotic dynamics in
stock price changes frequently uses the Grassberger and
Procaccia [3] correlation integral to compute the
correlation dimension. Several studies have computed the
correlation dimension for the S&P 500 Index. For
example, Scheinkman and LeBaron [11] concluded that
the correlation dimension for the S&P 500 Index appeared
to be about 6, implying that such an index has nonlinear

structure. The investigation of chaotic systems can
become extremely complicated. But the evidence of
some unknown underlying structure motivates the search
for nonlinear behavior through neural networks [14].

A neural network uses an abundance of input data that
require categorizing and interpreting. It is not necessary
to specify an underlying struoture, since the network
infers the paiterns by generalizing from the interaction of
the inputs. Neural networks are structured layers of
nodes, weights and connections. The layers include an
input layer, an output layer, and one or more interior
layers called the middie or hidden layers. Signals travel
throngh the network from the input layer to the hidden
layers to the output layer. Each node of each layer is
connected to cach node of the next layer. Each
connection between neurons has a numerical weight,
either positive or negative, associated with it which is
multiplied times the data coming from the previous layer
node to which it is connected. This weight reinforces or
inhibits the effect of the previous node on the next layer
node. The node applies a transfer function to the sum
of the weighted inputs and computes one output signal.

Learning in a backpropagation neural network involves
two repeated phases: the forward phase and the
backward phase, During the forward phase, the input 1s
sent forward through the network, generating an output
value for the final layer node. The difference between
what the actual output should be and the network's output
is computed. In the backward phase, the computed error
is used and weights are changed in proportion to the error
times the input node signal, After weight adjustment, the
data is again sent through the network, and the process
continues until the difference of each ouiput of the
network and the actual value is below some specified
level. For a detailed explanation of the fraining process,
sec Malliaris and Salchenberger [8].

3. Daia

Wecekly data have been collected from each Friday for
two years, 1989 and 1990, on ten variables, including:
the S&P 500 closing Index, the three month Treasury Bill
interest rate, the thirly year Treasury Bond interest rate,
weekly New York Stock Exchange volume, Money
Supply as measured by both M1 and M2, Price/Earnings
ratio, Gold price, Crude Oil price, and the CBOE put/call
ratio. The stock market is influenced by expectations of
the traders, fundamental measures of economic activity
and technical factors such as trading volume. Some
representalive references that discuss the selection of
these variables are [1], {2], and [7].

A penerally recommended method for assessing the
true unbiased amount of error in a neural network model




is the use of cross-validation {13}, [5]. To use cross-
validation, the data set must be divided into k distinct sets
of about the same size, Hach set is used independently
for testing while the remaining data is utilized for training
the network. Each training and testing of the network
will result in a final error amount in each set. The
average of these errors over all the k sets is an almost
unbiased estimator of the true error rate [13].

4. Methodology

The efficient market hypothesis claims that the best
estimate of a value for a following period is the same as
the value in the current period. To have a baseline amount
against which to compare the performance of the neural
network, we caloulate the difference between the next
week's aciual and expected values and use this value as
the number to "beat" if the random walk hypothesis is to
be rejected. The results are caloulated for the same ten
testing periods used for the neiwork oross-validation and
will be shown as the Mean Absolute Deviation (MAD},
Mean Square Error (MSE) and as a correlation between
expected and actual cutput. After using the constructed
neurgl network to generate cutput for the same weeks, the
same statistics are also calculated for the network and
actual differences. For the neural network to do a better
job predicting than the random walk hypothesis, these
comparison statistics must outperform those gencrated
previously more than 50% of the time.

The neural network was built and refined using
California Scientific Software's Brainmaker v2.53 and
Genetic Training Option, run on an Intel 486/50. When
setting up a neural network, one must decide how many
nodes to have in the input and hidden layers. Because a
neural network cannot *remember” data from a previous
row in the sense of a {ime series, it is important to include
in each row enough lags to give the network this
knowledge. Each of the data input variables was lagged
twice, tripling the number of input nodes, Input nodes
were also included for the week of the month and the
month of the year. The output node was the following
Friday's value of the S&P Closing Index. That is, the
network was siructured to give an estimate for the
following Friday's S&P 500 Index.

In order to determine the optimal number of nodes in
the hidden layer or layers, Brainmaker's Genetic Training
Option was implemented. This program tests all possible
networks within user-specified parameters. The number
of hidden layers was varied between 1 and 2, with the
number of nodes in each layer varying from 2 to 45. The
training tolerance, originally set at the default value of .1,
is a number Brainmaker uses to compare network output
to actual values {data has been scaled to be between 0 and

D). If the difference between the two is less than the
tolerance, the fact is classified as "good". When the
network can judge all the training facts as good, it stops
training, i.e., it has converged. Lowering the tolerance
forces the network to work a little harder: Convergence
will take longer but the final error should be smaller and
the correlation between output and actual values in the
testing set may be higher. The training tolerance was
lowered to .07. That is, no network output would be
classified as good if its scaled absolute difference from
the scaled actual output was greater than .07.

The Genetic Training Option records statistics on each
network configuration which allow fer comparison
between the configurations. The nefwork with the lowest
Root Mean Square Error and the highest correlation had
the configuration of 2 hidden layers with 24 nodes in the
first hidden layer and 8 nodes in the second hidden layer.

Onee the number of layers and nodes per layer was
decided, the weights assigned to each node were adjusted
to give the best performance. Inifially, weights are
random; they are refined through an evolutionary process.
This was done using Brainmaker's Genetic Training
Option to genetically evolve the trained network, In this
process, the weights are mutated and crossed over, based
on theories of genetic evelution, to see whether & child
network can be evolved with the same node structure as
the parent, but with superior weights. The mutation rate
was set at 10%, the crossover rate at 50% and each child
network was run 100 times to polish the weights. The
resulting best weights were saved and used as the weights
of the network.

The data set was randomized and divided into 10 sets
of data, each with 10 rows. This was done in order to
use cross-validation to better estimate the true error.
Bach set was used, in turn, as a testing set, while the
network was trained on the remaining data. Using cross-
validation techniques, the RMS errors and the
correlations between network output and actual S&P
Index values were ealculated for each of the ten testing
sets. The average RMS error, the almost unbiased
estimate of the true error, across all the sets was 0.046
(Brainmaker's result on scaled data), with an average
correlation of 0.964.

5. Analysis

The MAD, MSE and correlation for each of the ten
non-overlapping sets were caleulated, comparing the
actual value of the S&P to the efficient market
hypothesis, which expeots the next period's value to be
equal to today, and to the output from the neural
network. The neural network output for each of the sets
was generated on the testing set using the network which




had been trained on the corresponding training set. The
results are shown in Table 1. As ean be seen for each
testing set, the neural network cutperformed the random
walk model in each category. The average MAD for the
network was 3.167, as opposed to 6.188 for the random
walk. The average MSE for the network was 15.609, as
opposed to 41.32 for the random walk.

The strong evidence that in ten out of ten sets of data
covering a span of two years, neural networks have
outperformed the random walk model can be interpreted
to be supportive of the deterministic structure of the stock
market returns during our sample period. Results of this
nature are encouraging to researchers who wish te develop
deterministic theories which eventually may replace the
existing probabilistic paradigm.

We have argued, as have other financial researchers,
that the October 1987 stock market crash, to this date, has
not been reconciled with the efficient market hypotheses.
While numerous researchers have criticized the random
walk behavior and have sought evidence of a deterministic
structure in stock market returns, no theoretical framework
currently exists that describes the stock returns in a
deterministic way. If such a structure were to be
identified, phenomenal arbitrage opportunities would
become available. Although the development of such
deterministic models may take a long time to be
developed, results such as these shown here present a
challenge to efficient market theorists.
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