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Abstract

A neural network modelwhich processes financial input  where C is the market price to be charged for the option,
data is developed to estimate the market price of options, N is the cumulative normal distribution, T is the number

The network's ability to estimate option prices is compared of days remaining until expiration of the option expressed
fo estimates generated by the Black-Scholes model, a as a fraction of a year, S is the price of the underlying
traditional financial moedel, Comparisons reveal that the asset, 1 is the risk-free interest rate prevailing at period
neural network outperforms the Black-Scholes model in X is the exercise price of the option and d; and d, are

about half of the cases examined. given by (2) and (3)

Al Topic: Neurai networks 5 2

Domain Area: Financial modelling In(Z)+ (r+£-) T 7))
Language/Tool: NeuralWorks Professional [I™ d,= X 2

Status: Prototype has been successfully developed o7

Effort:  Approximately 2 man-years of effort
Impact: Our results show that a neural network can

successfully compete witha sophisticated, well-established
mathematical model. d,=d, -ayT (3)
The Black-Scholes option pricing madel where @ is the variance rate of return for the underlying

asset, For any time interval {0,t] of length ¢, the return on
In 1973, Black and Scholes [1] proposed a model for the underlying asset is normally distributed with variance

computing the current market worth of an option. An a’t [4].
option is an agreement giving the holder the right to One of the critical assumptions underlying this model
purchase [a call} or sell [a put] some asset at an agreed is that the distribution of prices is log-normal and the
upon future time, called the date of expiration, The price volatility is constant (1], [3]. For a rigorous presentation
that will be paid at this future date is catled the exercise of the deriwiation of the Black-Scholes model, see [5}. The
price of the option. The market price of the option is the eéxcreise price, number of days to. expiration, and c_losmg
price you pay now for the privilege of buying or selling price are observable. The vol.at:hty cannot be directly
the underlying asset on or before the expiration date. The observed so it is computed implicitly. Most observers‘use
Black-Scholes model uses five input variables fexercise the Implied Standard Deviation of observed option prices
price of the option, volatility of the underlying asset, price as an estimate of volatility [2]. We used at-the-money call
of the underlying asset, number of days until the option Opttops for this estimate and then used that estimate of
expires, and interest rate] to estimate the price which volatility to calculate all the call options for that day.
should be charged for an option. The Black-Soholes Options with an exercise price equal to the closing
option pricing formula for calculating the equilibrium price price of the index are said to be at-the-money. In fhe
of call options is shown in (1) pricing of calls, exercise prices less than the closing price
are in-the-money, and exercise prices greater than the
closing price are out-of-the-money.
C=SN(d,) -Xe *T'N {d,) M SingceP its introduction in i9¥73, the Black-Schoies
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connection weights were initially randomized, and were
then determined during the training process.

The generalized Delta rule was used with the
backpropagation of error to transfer values from internal
nodes, (For a more detailed explanation of
backpropagation learning and the generalized Delta rule,
see [6].) The sigmoidal function is the activation function
specified in this neuwral network and is used to adjust
weights associated with each input node.

Supervised leamning was conducted with {raining sets
consisting of the seven predictor variables and the
corresponding market price of the option for each exercise
price, for each trading day. For the input nodes in which
the data was not in ratio form, the values were scaled to
be within a range of 0 to 1. This minimizes the effect of
magnitude among the inputs and increases the
effectiveness of the learning algorithm. The selection of
the examples for the training set focused on quality and
the degree to which the data set represented the
population. The size of the training set is important since
a larger iraining set may take longer io process
computationatly, but it may accelerate the rate of learning
and reduce the number of iterations required for
convergence,

The learning rate and momentum were set initially at
0.9 and 0.6, respectively and the learning rate was adjusted
downward and the momentum was adjusted upward to
improve performance. The training examples were
presented to the network in random order to maximize
performance and to minimize the introduction of bias.
Training was halted after a minimum of 40,000 iterations.
The network was implemented using the sofiware package
Neuralworks Explorer running on a  386-based
microcomputer with a math co-processor,

Results

To compare the estimations made by each model, we
compute and report the mean absolute deviation (MAD),
mean absolute percent error (MAPE), and mean squared
error (MSE) for each of the 5 two-week periods for both
in-the-money and out-of-the-money prices. Option prices
were estimated from the Black-Scholes meodel using a
computer program based on equations (1)-(3). Neural
network estimations were developed by inputting the
estimation sets into a trained network.

The initial results showed that, compared to the actual
prices, the neural network estimations had a lower MAPE
than Black-Scholes for 4 of the 5 two-week periods for the
out-of-the-money case, but Black-Scholes was superior for
4 of 5 two-week periods for in-the-money trades, These
results are reported in Tables 2 and 3.

Paired sample comparisons tests were run on the Black-

Scholes estimates and actual market prices and on the
neural network estimates and actual market prices, These
results show that the Black-Scholes consistently overprices
the options, while the neural network underprices them.
We also observe that the standard deviation of the
differences is smaller in the neural network prices.

Results of the paired sample comparisons test for the
in-the-money oases show that there is a statistically
significant difference between the means of the sample of
neural network predictions and the sample of actual market
prices. The Black-Scholes however, did not show a
significant difference from zero, hence it provides a betler
model for in-the-meney, for this data set.

A few observations about the results can be made.
First, although we have only presented summary statistics,
one can observe similarities between the individual price
estimates made by the two models. Each model has
difficulty computing prices when the trades are deep in-
the-money. This is expeoted for the neural network
because the majority of trades are close to at-the-money
and thus, there are insufficient examples fo present to the
network for these cases. Secondly, we would not expect
to achieve results with the neural network which are
significantly different than those of Black-Scholes if many
traders are using the Black-Schoeles model and the market
prices reflect their strategies. The neural network is only
capable of learning the relationships which are imbedded
in the observations. The neural network exhibited a bias
of underpricing the options and in fact, may be best
utilized as input into another pricing mechanism.

Summary and conclusions

This empirical examination of the Black-Scholes option
valuation mode! and the neural network option pricing
model leads to some interesting conclusions. First, while
the two modelling approaches differ fundamentally in their
methodology to determining option prices, some common
results emerge. While the neural network performs better
than Black-Scholes on prices out-of-the money, estimations
near the expiration date are accurate for both. The neural
network may play a valuable role in some type of
preliminary data analysis for in-the-money, rather than
directly computing prices,

Second, are several limitations which may restrict the
use of neural network models for estimation. There is no
formal theory for determining opfimal network topology
and therefore, decisions like the appropriate number of
layers and middie layer nodes must be determined using
experimentation. The development and interpretation of
neural network models requires more expertise from the
user than traditional analytical models. Training a neural
network can be computationally intensive and the results




closing price are out-of-the-money.

Since its introduction in 1973, the Black-Scholes
options pricing model has performed better overall than
any model. Empirical tests show that Black-Scholes
remains superior among option pricing equilibrivin models,
with the possible exception of cases in which trades are
made deep-in and deep-out-of-the-money. The volume of
research which continues to proliferate related to the
Black-Scholes model, even 20 years after ifs introduction,
indicates there is considerable interest and value in
developing a model which is more robust than Black-
Scholes, In addition, there is some reason to believe that
the trading process itself may reveal underlying strategios
as well as analytical models and there is information to be
gained from historical pricing data. Neural networks have
been shown to be useful in modelling nonstationary
processes and nonlinear dependencies and thus, may
represent a channel of investigation in the search for
another type of option pricing model,

Methodology

The data set used for this research was developed using
option price transactions data published in the Wall Street
Journal during the period from January 1, 1990 to June 30,
1990. The exercise price, market price of the option, and
closing price of the S&P 100 index are reported for each
trading day. The interest rate came from the results of the
3-month US Treasury Bill Monday auction, as reported
each Tuesday in the Wall Street Journal. The data sef
selected for testing includes pricing data from April 23 to
June 29, 1990 and includes in-the-money options and out-
of-the-money options with time to expiration between 30
and 60 days. Typically, 6 different call prices per day are
quoted.

The five variables selected to estimate the market
price of the option are those used in the Black-Scholes
model;, exercise price, time to expiration, closing price,
volatility, and interest rate. For the neural network, we
added two lagged variables: yesterday's closing price,
LAG CLOSE PRICE, and yesterday's market price of the
option, LAG MARKET PRICE.

Preliminary data analysis revealed dependencies and
relationships between the variables which were used to
partition the data scts for the neural network.
Experimentation with different training sets showed that
better results could be obtained in the neural networks
when the data was separated into in-the-money and out-of-
the-money groups. Prices in-the-money vary from $60.00
to $0.75; prices out-of-the-money vary from $15.50 to
$0.0625. A larger proportion of observations exist for out-

of-the-money prices than for in-the-money prices.
Correlations were also found between time to expiration
and market price of the option, and between the closing
price and the market price of the option.

Under supervised learning, the feedforward,
backpropagation neural network leamns relationships
between input and output variables during a fraining
process, as data are presented to the network. One
approach to testing the performance of the network is to
check its accuracy in estimating values for a holdout
sample generated from the training set. For evaluating the
performance of the option price neural network, we
selected a more realistic and more difficult performance
measure. The network was trained using historical data
and option price estimations for a future period were
developed with the trained network and compared to actual
prices.

To capture the volatile nature of the options market, a
relatively short time frame was used for the training sets
and testing sets. The testing sets were developed using a
two-week time frame; this was a convenient choice
because interest rate and volatility changed weekly and
were relatively stable over a two-week period. Five two-
week periods were selected for price estimation; the
weeks beginning April 23, May 7, May 21, June 4, and
June 18. To provide the neural network models with a
variety of examples, each training set included as many
observations as necessary to provide at least one full cycle
{30 days prior to the estimation period) of pricing data.

The neural network model

Since feedforward, single hidden layer neural networks
have been successfully wsed for classification and
prediction, we selected this network model for our initial
experiments and used the backpropagation training
algorithm, A neural network consisting of 7 input nodes,
4 middle layer nodes, and I output node was developed.
The input nodes represent the five financial variables used
in the Black-Scholes model (EXER, DAYS, CLOSE
PRICE, VOL, and INT) and two lag variables (LAG
CLOSE PRICE and LAG MARKET PRICE), and the
output node (MARKET PRICE) represents the market
price of the option,

The network is fully connected, with a direct
connection from exercise price (EXER) to the output node
(MARKET PRICE). Better resulis were achieved with this
additional connection because of the linear dependence
between EXER and MARKET PRICE observed in the data
set and verified with a series of regression models. All the




are sensitive to the selection of learning parameters,
activation function, topology of the network, and the
compeosition of the data set.

Thirdly, the paper iltustrates that the neural network
methodology offers a valuable alternative to estimating
option prices to the traditional Black-Scholes model. The
evidence reported here is encouraging, particularly in view
of the essentially undisputed superiority of the Black-
Scholes model. Analytically, it is remarkable, that the
well-developed methodology of Black-Scholes, with its
explicit formula for pricing options, derived using
sophisticated financial arbitrage arguments and advanced
stochastic  caleulus techniques, can actually be
approximated by neural networks.
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